ПРОСТОЕ ЧИСЛОНатуральные числа, отличные от единицы, подразделяют на простые и составные. Простым называется такое натуральное число, делителями которого являются только оно само и единица. Остальные числа называются составными. Евклид определял простые числа так: «Простое число есть измеряемое только единицей, составное число есть измеряемое некоторым числом». Примеры простых чисел: 2, 5, 37, 1987. Числа же 4, 6, 162, 2553 составные. Число 1 не относят ни к простым, ни к составным. Простых чисел, так же как и составных, бесконечно много. Каждое составное натуральное число можно разложить на простые множители. Например: «Основная теорема арифметики» утверждает, что любые два разложения данного натурального числа на простые множители одинаковы, если не обращать внимание на порядок следования сомножителей. Для того чтобы доказать, что данное натуральное число Более удобный способ «отсеивания» составных чисел основан на следующем наблюдении. Если выписать подряд последовательные натуральные числа, то, зачеркивая каждое второе число из следующих за числом 2, мы отсеем все числа, кратные числу 2; зачеркивая каждое третье число из следующих за числом 3, мы отсеем все числа, кратные 3, и, вообще, какое бы натуральное число Такой способ отыскания простых чисел был известен еще греческому математику Эратосфену, жившему в III в. до н.э. Во времена Эратосфена писали на восковых дощечках, а вместо того чтобы числа вычеркивать, дощечку в нужном месте прокалывали. Отсюда и название способа - «решето Эратосфена». В разные времена математики искали формулу, которая при различных значениях входящих в нее переменных давала бы простые числа. Так, Л. Эйлер указал многочлен Издавна математиков интересовал вопрос о распределении простых чисел в натуральном ряду. Рассуждение Евклида, доказывающее бесконечность числа простых чисел в натуральном ряду (см. Евклида алгоритм), применимо и для доказательства бесконечности числа простых чисел некоторого специального вида, например простых чисел вида В 1837 г. немецкому математику Л. Дирихле удалось доказать, что в любой арифметической прогрессии, первый член и разность которой взаимно просты, есть бесконечно много простых чисел. В доказательстве Дирихле были использованы новые для теории чисел методы (функции комплексного переменного, ряды), открывшие совершенно новые пути для ее развития. О простых числах более сложного вида известно мало. Так, до сих пор неизвестно, конечно или бесконечно число простых чисел вида Вопрос о том, как часто простые числа встречаются в натуральном ряду и как они распределены среди натуральных чисел, оказался очень сложным. Изучение таблиц простых чисел показывает, что в натуральном ряду есть участки, где простые числа располагаются гуще. Есть даже числа, которые находятся совсем близко друг от друга, как, например, 2 и 3, 3 и 5, 191 и 193, 2711 и 2713. Такие пары чисел называются близнецами. До сих пор неизвестно, конечно или бесконечно число пар близнецов. Но есть и сколь угодно длинные отрезки натурального ряда, в которых нет ни одного простого числа. Например, среди последовательных чисел Важными характеристиками расположения простых чисел в натуральном ряду служат величины:
Отсюда, в частности, следует, что простые числа в среднем располагаются реже, чем члены какой угодно арифметической прогрессии. Можно доказать, что простые числа располагаются все же гуще квадратов натуральных чисел. Но все эти результаты очень мало говорят о самом числе Большой вклад в разработку этого доказательства внес П. Л. Чебышев, а окончательный результат был получен в 1896 г. французским математиком Ж. Адамаром и бельгийским математиком Ш. Валле-Пуссеном. Кроме того, в 1852 г. Чебышев доказал предположение французского математика Ж. Бертрана о том, что для любого натурального числа
|