Читать в оригинале

<< Предыдущая Оглавление Следующая >>


КОМПЛЕКСНЫЕ ЧИСЛА

Так называют числа вида , где  и  - действительные числа, а  - число особого рода, квадрат которого равен , т.е. . Действия над комплексными числами выполняются по таким же правилам, что и над многочленами, при этом  заменяют на . Например:

;

;

;

;

.

Равенство  означает, что  и .

Древнегреческие математики считали «настоящими» только натуральные числа, но в практических расчетах за два тысячелетия до н.э. в Древнем Египте и Древнем Вавилоне уже применялись дроби. Следующим важным этапом в развитии понятия о числе было введение отрицательных чисел – это было сделано китайскими математиками за два века до н.э. Отрицательные числа применял в III в. н.э. древнегреческий математик Диофант, знавший уже правила действий над ними, а в VII в. н.э. эти числа подробно изучили индийские ученые, которые сравнивали такие числа с долгом. С помощью отрицательных чисел можно было единым образом описывать изменения величин. Уже в VIII в. н.э. было установлено, что квадратный корень из положительного числа имеет два значения – положительное и отрицательное, а из отрицательных чисел квадратные корни извлечь нельзя: нет такого числа , чтобы .

В XVI в. в связи с изучением кубических уравнений оказалось необходимым извлекать квадратные корни из отрицательных чисел. В формуле для решения кубических уравнений (см. Алгебраическое уравнение) содержатся кубические и квадратные корни. Эта формула безотказно действует в случае, когда уравнение имеет один действительный корень (например, для уравнения ), а если оно имело три действительных корня (например, ), то под знаком квадратного корня оказывалось отрицательное число. Получалось, что путь к этим трем корням уравнения ведет через невозможную операцию извлечения квадратного корня из отрицательного числа.

«Помимо и даже против воли того или другого математика, мнимые числа снова и снова появляются на выкладках, и лишь постепенно, по мере того как обнаруживается польза от их употребления, они получают все более и более широкое распространение». Ф. Клейн

144.jpg

Чтобы объяснить получившийся парадокс, итальянский алгебраист Дж. Кардано в 1545 г. предложил ввести числа новой природы. Он показал, что система уравнений , , не имеющая решений в множестве действительных чисел, имеет решения вида , , нужно только условиться действовать над такими выражениями по правилам обычной алгебры и считать, что . Кардано называл такие величины «чисто отрицательными» и даже «софистически отрицательными», считал их бесполезными и стремился не применять их. В самом деле, с помощью таких чисел нельзя выразить ни результат измерения какой-нибудь величины, ни изменение этой величины. Но уже в 1572 г. вышла книга итальянского алгебраиста Р. Бомбелли, в которой были установлены первые правила арифметических операций над такими числами, вплоть до извлечения из них кубических корней. Название «мнимые числа» ввел в 1637 г. французский математик и философ Р. Декарт, а в 1777 г. один из крупнейших математиков XVIII в. – Л. Эйлер предложил использовать первую букву французского слова imaginaire (мнимый) для обозначения числа  («мнимой» единицы); этот символ вошел во всеобщее употребление благодаря К. Гауссу (1831).

В течение XVII в. продолжалось обсуждение арифметической природы мнимостей, возможности дать им геометрическое истолкование.

Постепенно развивалась техника операций над комплексными числами. На рубеже XVII и XVIII вв. была построена общая теория корней -й степени сначала из отрицательных, а потом из любых комплексных чисел, основанная на следующей формуле английского математика А. Муавра (1707)

.

С помощью этой формулы можно также вывести равенства для косинусов и синусов кратных дуг. Л. Эйлер вывел в 1748 г. замечательную формулу

,

которая связывала воедино показательную функцию с тригонометрическими. С помощью формулы Эйлера можно возводить число  в любую комплексную степень. Любопытно, например, что . Можно находить синусы и косинусы от комплексных чисел, вычислять логарифмы таких чисел, т.е. строить теорию функций комплексного переменного.

«Никто ведь не сомневается в точности результатов, получаемых при вычислениях с мнимыми количествами, хотя они представляют собой только алгебраические формы и иероглифы нелепых количеств». П. Карно

145.jpg

В конце XVIII в. французский математик Ж. Лагранж смог сказать, что математический анализ уже не затрудняют мнимые величины. С помощью комплексных чисел научились выражать решения линейных дифференциальных уравнений с постоянными коэффициентами. Такие уравнения встречаются, например, в теории колебаний материальной точки в сопротивляющейся среде. Еще ранее швейцарский математик Я. Бернулли применил комплексные числа для вычисления интегралов.

Хотя в течение XVIII в. с помощью комплексных чисел были решены многие вопросы, в том числе и прикладные задачи, связанные с картографией, гидродинамикой и т.д., однако еще не было строго логического обоснования теории этих чисел. Поэтому французский ученый П. Лаплас считал, что результаты, получаемые с помощью мнимых чисел, - только наведения, приобретающие характер настоящих истин лишь после подтверждения прямыми доказательствами.

КАРЛ ФРИДРИХ ГАУСС
(1777-1855)
146.jpg

Математические вычисления заменили Гауссу обычные детские игры. Он делил единицу на все простые числа  из первой тысячи подряд, подмечая, что десятичные знаки рано или поздно начинают повторяться. Рассмотрев большое количество примеров, Гаусс доказал, что число цифр в периоде не превосходит  и всегда является делителем . Он интересовался случаями, когда период в точности равен , и это постепенно привело его к первому открытию.

Ученый доказал, что правильный -угольник, где  – число простое, может быть построен циркулем и линейкой в том, и только в том, случае, когда  имеет вид . Например, если  то правильные трех-, пяти-, семнадцати- и 257-угольники можно построить циркулем и линейкой, а семиугольник – нельзя. Еще древние математики (в их числе Архимед) умели строить циркулем и линейкой правильные -угольники при  и вообще при ; ; ; , и только такие. Ученые безуспешно пытались построить правильный семиугольник, девятиугольник. А Гаусс дал полное решение проблемы, над которой трудились ученые в течение 2 тыс. лет.

С этого момента девятнадцатилетний Гаусс окончательно решил заниматься математикой (до этого он не мог сделать выбор между математикой и филологией). И всего через 9 дней в его дневнике появляется запись о втором открытии. Гаусс доказал так называемый квадратичный закон взаимности – один из основных в теории чисел. Этот закон открыл еще Л. Эйлер, но доказать его не смог.

С именем К. Ф. Гаусса связаны многие замечательные страницы в истории математики. Он дал доказательство основной теоремы алгебры (всякое алгебраическое уравнение с действительными коэффициентами имеет корень). Гаусс создал теорию поверхностей. До него были изучены геометрии только на двух поверхностях: на плоскости (планиметрия Евклида) и на сфере (сферическая геометрия). Гаусс нашел способ построения геометрии на любой поверхности, определил, какие линии играют на поверхности роль прямых, как мерить расстояния между точками на поверхности и т.д. Теория Гаусса получила название внутренней геометрии. Он не опубликовал своих работ по неевклидовой геометрии и теории эллиптических функций. Эти результаты были открыты заново его младшими современниками: русским математиком Н. И. Лобачевским и венгерским математиком Я. Больяй – в первом случае и норвежским математиком Г. X. Абелем и немецким математиком К. Г. Якоби – во втором.

Гаусс занимался также астрономией, электромагнетизмом. Ему удалось вычислить орбиту малой планеты (астероида) Цереры. Решение этой сложной задачи принесло ученому известность, и он был приглашен заведовать кафедрой математики и астрономии, с которой была связана должность директора Геттингенской обсерватории. Этот пост Гаусс не покидал до конца жизни. Результаты своих исследований по астрономии Гаусс объединил в фундаментальном труде «Теория движения небесных тел».

В конце XVIII-начале XIX в. было получено геометрическое истолкование комплексных чисел. Датчанин Г. Вессель, француз Ж. Арган и немец К. Гаусс независимо друг от друга предложили изображать комплексное число  точкой  на координатной плоскости. Позднее оказалось, что еще удобнее изображать число не самой точкой , а вектором , идущим в эту точку из начала координат. При таком истолковании сложению и вычитанию комплексных чисел соответствуют эти же операции над векторами. Вектор  можно задавать не только его координатами  и , но также длиной  и углом , который он образует с положительным направлением оси абсцисс. При этом ,  и число  принимает вид , который называется тригонометрической формой комплексного числа. Число  называют модулем комплексного числа  и обозначают . Число  называют аргументом  и обозначают . Заметим, что если , значение  не определено, а при  оно определено с точностью до кратного . Упомянутая ранее формула Эйлера позволяет записать число  в виде  (показательная форма комплексного числа).

Очень удобно выполнять умножение комплексных чисел в показательной форме. Оно производится по формуле  т.е. при умножении модули перемножаются, а аргументы складываются.

Геометрическое истолкование комплексных чисел позволило определить многие понятия, связанные с функциями комплексного переменного, расширило область их применения. Стало ясно, что комплексные числа полезны во многих вопросах, где имеют дело с величинами, которые изображаются векторами на плоскости: при изучении течения жидкости, задач теории упругости.

Большой вклад в развитие теории функций комплексного переменного внесли русские и советские ученые. Н. И. Мусхелишвили занимался ее приложениями к теории упругости, М. В. Келдыш и М. А. Лаврентьев – к аэро- и гидродинамике, Н. Н. Боголюбов и B. C. Владимиров – к проблемам квантовой теории поля.

 



<< Предыдущая Оглавление Следующая >>