КОМПЛЕКСНЫЕ ЧИСЛАТак называют числа вида , где и - действительные числа, а - число особого рода, квадрат которого равен , т.е. . Действия над комплексными числами выполняются по таким же правилам, что и над многочленами, при этом заменяют на . Например: ; ; ; ; . Равенство означает, что и . Древнегреческие математики считали «настоящими» только натуральные числа, но в практических расчетах за два тысячелетия до н.э. в Древнем Египте и Древнем Вавилоне уже применялись дроби. Следующим важным этапом в развитии понятия о числе было введение отрицательных чисел – это было сделано китайскими математиками за два века до н.э. Отрицательные числа применял в III в. н.э. древнегреческий математик Диофант, знавший уже правила действий над ними, а в VII в. н.э. эти числа подробно изучили индийские ученые, которые сравнивали такие числа с долгом. С помощью отрицательных чисел можно было единым образом описывать изменения величин. Уже в VIII в. н.э. было установлено, что квадратный корень из положительного числа имеет два значения – положительное и отрицательное, а из отрицательных чисел квадратные корни извлечь нельзя: нет такого числа , чтобы . В XVI в. в связи с изучением кубических уравнений оказалось необходимым извлекать квадратные корни из отрицательных чисел. В формуле для решения кубических уравнений (см. Алгебраическое уравнение) содержатся кубические и квадратные корни. Эта формула безотказно действует в случае, когда уравнение имеет один действительный корень (например, для уравнения ), а если оно имело три действительных корня (например, ), то под знаком квадратного корня оказывалось отрицательное число. Получалось, что путь к этим трем корням уравнения ведет через невозможную операцию извлечения квадратного корня из отрицательного числа. «Помимо и даже против воли того или другого математика, мнимые числа снова и снова появляются на выкладках, и лишь постепенно, по мере того как обнаруживается польза от их употребления, они получают все более и более широкое распространение». Ф. Клейн Чтобы объяснить получившийся парадокс, итальянский алгебраист Дж. Кардано в 1545 г. предложил ввести числа новой природы. Он показал, что система уравнений , , не имеющая решений в множестве действительных чисел, имеет решения вида , , нужно только условиться действовать над такими выражениями по правилам обычной алгебры и считать, что . Кардано называл такие величины «чисто отрицательными» и даже «софистически отрицательными», считал их бесполезными и стремился не применять их. В самом деле, с помощью таких чисел нельзя выразить ни результат измерения какой-нибудь величины, ни изменение этой величины. Но уже в 1572 г. вышла книга итальянского алгебраиста Р. Бомбелли, в которой были установлены первые правила арифметических операций над такими числами, вплоть до извлечения из них кубических корней. Название «мнимые числа» ввел в 1637 г. французский математик и философ Р. Декарт, а в 1777 г. один из крупнейших математиков XVIII в. – Л. Эйлер предложил использовать первую букву французского слова imaginaire (мнимый) для обозначения числа («мнимой» единицы); этот символ вошел во всеобщее употребление благодаря К. Гауссу (1831). В течение XVII в. продолжалось обсуждение арифметической природы мнимостей, возможности дать им геометрическое истолкование. Постепенно развивалась техника операций над комплексными числами. На рубеже XVII и XVIII вв. была построена общая теория корней -й степени сначала из отрицательных, а потом из любых комплексных чисел, основанная на следующей формуле английского математика А. Муавра (1707) . С помощью этой формулы можно также вывести равенства для косинусов и синусов кратных дуг. Л. Эйлер вывел в 1748 г. замечательную формулу , которая связывала воедино показательную функцию с тригонометрическими. С помощью формулы Эйлера можно возводить число в любую комплексную степень. Любопытно, например, что . Можно находить синусы и косинусы от комплексных чисел, вычислять логарифмы таких чисел, т.е. строить теорию функций комплексного переменного. «Никто ведь не сомневается в точности результатов, получаемых при вычислениях с мнимыми количествами, хотя они представляют собой только алгебраические формы и иероглифы нелепых количеств». П. Карно В конце XVIII в. французский математик Ж. Лагранж смог сказать, что математический анализ уже не затрудняют мнимые величины. С помощью комплексных чисел научились выражать решения линейных дифференциальных уравнений с постоянными коэффициентами. Такие уравнения встречаются, например, в теории колебаний материальной точки в сопротивляющейся среде. Еще ранее швейцарский математик Я. Бернулли применил комплексные числа для вычисления интегралов. Хотя в течение XVIII в. с помощью комплексных чисел были решены многие вопросы, в том числе и прикладные задачи, связанные с картографией, гидродинамикой и т.д., однако еще не было строго логического обоснования теории этих чисел. Поэтому французский ученый П. Лаплас считал, что результаты, получаемые с помощью мнимых чисел, - только наведения, приобретающие характер настоящих истин лишь после подтверждения прямыми доказательствами.
В конце XVIII-начале XIX в. было получено геометрическое истолкование комплексных чисел. Датчанин Г. Вессель, француз Ж. Арган и немец К. Гаусс независимо друг от друга предложили изображать комплексное число точкой на координатной плоскости. Позднее оказалось, что еще удобнее изображать число не самой точкой , а вектором , идущим в эту точку из начала координат. При таком истолковании сложению и вычитанию комплексных чисел соответствуют эти же операции над векторами. Вектор можно задавать не только его координатами и , но также длиной и углом , который он образует с положительным направлением оси абсцисс. При этом , и число принимает вид , который называется тригонометрической формой комплексного числа. Число называют модулем комплексного числа и обозначают . Число называют аргументом и обозначают . Заметим, что если , значение не определено, а при оно определено с точностью до кратного . Упомянутая ранее формула Эйлера позволяет записать число в виде (показательная форма комплексного числа). Очень удобно выполнять умножение комплексных чисел в показательной форме. Оно производится по формуле т.е. при умножении модули перемножаются, а аргументы складываются. Геометрическое истолкование комплексных чисел позволило определить многие понятия, связанные с функциями комплексного переменного, расширило область их применения. Стало ясно, что комплексные числа полезны во многих вопросах, где имеют дело с величинами, которые изображаются векторами на плоскости: при изучении течения жидкости, задач теории упругости. Большой вклад в развитие теории функций комплексного переменного внесли русские и советские ученые. Н. И. Мусхелишвили занимался ее приложениями к теории упругости, М. В. Келдыш и М. А. Лаврентьев – к аэро- и гидродинамике, Н. Н. Боголюбов и B. C. Владимиров – к проблемам квантовой теории поля.
|