III ГАЛАКТИКИ И ВИХРИ9 ФРАКТАЛЬНЫЙ ВЗГЛЯД НА СКОПЛЕНИЯ ГАЛАКТИКВ главах 6 и 7, призвав на помощь геоморфологию, мы ввели кривые Коха и Пеано, однако объекты наиболее значительных приложений теории фракталов находятся в несколько иных областях. Неспешно подбираясь к основным течениям в науке, мы рассмотрим в этой главе (и в двух последующих) два вопроса исключительной древности, важности и сложности. Распределение звезд, галактики, скопления галактик и тому подобные материи издавна завораживают как любителей, так и специалистов, однако кластеризация до сих пор остается на периферии астрономии, да и всей астрофизики в целом. Главная причина заключается в том, что никто так и не в состоянии объяснить, почему распределение материи подчиняется иррегулярным иерархическим законам — по крайней мере, в определенном диапазоне масштабов. Во многих трудах, посвященных этой теме, можно встретить упоминание о феномене кластеризации, однако в серьезных теоретических исследованиях ее, как правило, поспешно заметают под ковер, утверждая, что галактики распределены вполне однородно — в масштабе, превышающем некий большой, но неопределенный порог. Рассматривая ситуацию с менее фундаментальных позиций, можно сказать, что нежелание иметь дело с иррегулярным проистекает из отсутствия инструментов для его математического описания. От статистики требуется выбрать между двумя допущениями, из которых только одно можно счесть тщательно исследованным (асимптотическую однородность). Стоит ли удивляться, что результаты, мягко говоря, неубедительны? Вопросы, однако, таковы, что от них трудно отмахнуться. Я считаю совершенно необходимым — параллельно с продолжением попыток объяснить кластеризацию — найти способ описать ее и смоделировать реальность чисто геометрическими средствами. Рассматривая эту тему с фрактальных позиций на протяжении нескольких глав настоящего эссе, мы рассчитываем с помощью недвусмысленных моделей показать, что полученные свидетельства предполагают такую степень кластеризации, которая далеко выходит за пределы, поставленные для нее существующими моделями. Эту главу следует считать вводной: здесь мы познакомимся с одной весьма влиятельной теорией образования звезд и галактик, предложенной Хойлом, с основной формальной моделью их распределения, которой мы обязаны Фурнье д'Альбу (эта модель также известна как модель Шарлье), и, что самое важное, получим некоторые эмпирические данные. Мы покажем, что и теорию, и данные можно интерпретировать в рамках понятия о масштабно-инвариантной фрактальной пыли. Я настаиваю на том, что распределение галактик и звезд включает в себя некую зону самоподобия, внутри которой фрактальная размерность удовлетворяет неравенству . Кроме того, здесь вкратце изложены теоретические причины, согласно которым можно ожидать , и, как следствие, обсуждается вопрос, почему наблюдаемая величина составляет . Анонс. В главе 22 мы воспользуемся фрактальными инструментами для улучшения нашего понимания смысла космологического принципа, рассмотрим, как его можно и нужно модифицировать, и узнаем, почему такая модификация непременно требует случайности. Обсуждение скоплений в рамках усовершенствованной модели мы отложим до глав 22, 23 и с 32 по 35. МОЖНО ЛИ ГОВОРИТЬ О ГЛОБАЛЬНОЙ плотности МАТЕРИИ? Начнем с тщательного рассмотрения концепции глобальной плотности материи. Как и в случае береговых линий, здесь все, на первый взгляд, выглядит очень простым, однако на деле очень быстро — и весьма интересно — запутывается. Для определения и измерения плотности начинают с массы , сосредоточенной внутри сферы радиуса с центром, совпадающим с центром Земли. Так оценивается приблизительная плотность, определяемая как . После этого величину устремляют к бесконечности, а глобальная плотность определяется как предел, к которому сходится в этом случае приблизительная плотность. Однако обязательно ли глобальная плотность сходится к положительному и конечному пределу? Если так, то скорость такого схождения оставляет желать лучшего, и это еще мягко сказано. Более того, оцеки предельной плотности, будучи рассмотрены во временной перспектив ведут себя довольно странно. По мере того как увеличивалась глубина наблюдаемой в телескоп Вселенной, приблизительная плотность на удивление систематически уменьшалась. Согласно де Вокулеру [104], уменьшение всегда было . Наблюдаемый показатель мно меньше 3 — в наилучшем приближении . Де Вокулер выдвинул тезис о том, что поведение величины приблизительной плотности отражает реальность, имея в виду, что . Эта формула вызывает в памяти классический результат для шара радиуса , вложенного в евклидово пространство размерности , — объем такого шара . В главе 6 мы встречались с такой же формуле для кривой Коха, с той лишь разницей, что показателем там была не евклидова размерность , а дробная фрактальная размерность. А в главе 8 мы получили формулу для канторовой пьи на временной оси (здесь ). Все эти прецеденты заставляют (причем весьма настойчиво) предположить, что показатель де Вокулера представляет собой не что иное, как фрактальную размерность. ВХОДЯТ ЛИ ЗВЕЗДЫ В ДИАПАЗОН МАСШТАБНОЙ ИНВАРИАНТНОСТИ? Очевидно, что диапазон масштабной инвариантности, в котором удовлетворяет неравенству , не должен включать в себя объекты с явно определенными границами — такие, например, как планеты. А вот входят ли в него звезды? Согласно данным, полученным Уэбби ком и приведенным в [135], массу Млечного Пути внутри сферы рад уса вполне можно представить в виде , где величина экстраполируется с галактик. Мы, однако, продолжим наше обсуждение исключительно в галактических терминах. СУЩЕСТВУЕТ ЛИ У ДИАПАЗОНА МАСШТАБНОЙ ИНВАРИАНТНОСТИ ВЕРХНИЙ ПОРОГ? Вопрос о том, насколько далеко в сторону очень больших масштабов простирается диапазон, внутри которого , весьма противоречив, причем в последнее время он снова привлек к себе внимание. Многие авторы либо прямо заявляют, либо подразумевают, что этот диапазон допускает существование внешнего предела, соответствующего размерам скоплений галактик. Другие авторы выражают свое несогласие с этим мнением. Де Вокулер [104] утверждает, что «кластеризация галактик и, возможно, всех остальных форм материи является доминатной характеристикой структуры Вселенной во всех доступных наблюдению масштабах, причем нет никаких указаний на какое бы то ни было приближение к однородности; средняя плотность вещества неуклонно падает по мере того, как принимаются во внимание все большие объемы пространства, и у нас нет экспериментально подтвержденных оснований полагать, что эта тенденция не распространяется на значительно большие расстояния и меньшие значения плотности». Дебаты между этими двумя школами, безусловно, весьма интересны и важны — для космологии, но не для нашего эссе. Даже если диапазон, в котором , имеет границы с обеих сторон, само его существование достаточно значительно для того, чтобы оправдать самое тщательное исследование. В любом случае Вселенная (совсем как тот клубок ниток, о котором мы говорили в главе 6) располагает, по всей видимости, целым рядом различных эффективных размерностей. Если начать с масштабов порядка радиуса Земли, то первой встретившейся нам размерностью будет 3 (такова размерность твердых тел с четкой границей). Далее размерность падает до 0 (так как материя рассматривается как скопление изолированных точек). Далее идет весьма интересный участок, характеризуемый некой нетривиальной размерностью, удовлетворяющей неравенству . Если масштабно-инвариантная кластеризация продолжается до бесконечности, то на этом последнем значении ряд эффективных размерностей и заканчивается. Если же существует конечный внешний порог, то к списку добавляется четвертый интервал размерностей, внутри которого точки теряют свою индивидуальность, и у нас на руках оказывается однородный газ, т. е. размерность снова возвращается к 3. Самым же наивным представлением является то, согласно которому галактики распределены во Вселенной приблизительно однородно. В этом случае последовательность размерностей D сводится к трем значениям: 3, 0 и опять 3. < Общая теория относительности утверждает, что при отсутствии материи локальная геометрия пространства стремится стать плоской и евклидовой, в то время как присутствие материи переводит ее в локально риманову. Здесь мы можем говорить о глобально плоской Вселенной, размерность которой равна 3 с локальными значениями . Такой тип возмущений описан в [519], довольно туманной работе, автор которой приводит (с. 312) пример построения кривой Коха (см. главу 6), не ссылаясь при этом на самого Коха. ► ВСЕЛЕННАЯ ФУРНЬЕ Нам остается лишь построить фрактал, который удовлетворял бы правилу , и посмотреть, как он будет согласовываться с общепринятыми взглядами на Вселенную. Первая подробно описанная модель такого рода была предложена Э. Э. Фурнье д'Альбом (см. главу 40). Хотя книга Фурнье [152] представляет собой по большей части художественный вымысел, замаскированный под научное исследование, в ней все же содержится несколько чрезвычайно интересных соображений, которые мы вскоре обсудим. Сначала же, как мне кажется, следует описать структуру, предложенную Фурнье. Начинаем построение с правильного восьмигранника, проекция которого представлена в центре рис. 141. Проекция показывает четыре угла квадрата, диагональ которого составляет 12 «единиц», и центр этого квадрата. Однако у восьмигранника есть еще две точки над и под нашей плоскостью на перпендикуляре, проведенном через центр квадрата, на одинаковом расстоянии в 6 «единиц» от этого центра. Далее каждая точка заменяется шаром радиуса 1, который мы будем рассматривать как «звездный агрегат нулевого порядка». Наименьший шар, содержащий в себе все 7 первоначальных шаров, назовем «звездным агрегатом первого порядка». Агрегат второго порядка получается увеличением агрегата первого порядка в раз и заменой каждого из новых шаров радиуса 7 копией агрегата первого порядка. Аналогичным образом, агрегат третьего порядка получается увеличением агрегата второго порядка в раз и заменой каждого из шаров копией агрегата второго порядка. И так далее. Короче говоря, при переходе между соседними порядками агрегации как число точек, так и радиус шаров увеличивается в раз. Следовательно, для всякого значения , которое является радиусом какого-либо агрегата, функция , определяющая количество точек, содержащихся в шаре радиуса , имеет вид . Для промежуточных функция принимает меньшие значения (достигая ), однако, согласно общей тенденции, . Возможно также интерполировать агрегаты нулевого порядка последовательными этапами до агрегатов порядка —1, —2 и т. д. На первом этапе заменим каждый агрегат нулевого порядка копией агрегата первого порядка, уменьшенной в отношении 1/7, и так далее. При таком построении отношение остается истинным для все меньших значений . После бесконечной экстра- и интерполяции мы получаем самоподобное множество размерности . Кроме того, размерность объекта в 3-пространстве вовсе не обязывает его непременно быть прямой линией да и любой другой спрямляемой кривой. Ему даже не обязательно быть связным. Каждая размерность совместима с любой меньшей либо равной по величине топологической размерностью. В частности, топологическая размерность бесконечной в обе стороны вселенной Фурнье равна 0, так как она является вполне несвязной «пылью». РАСПРЕДЕЛЕНИЕ МАССЫ: ФРАКТАЛЬНАЯ ГОМОГЕННОСТЬ Шаг от геометрии к распределению массы представляется мне как нельзя более очевидным. Если каждый звездный агрегат нулевого порядка нагрузить единичной массой, то масса внутри шара радиуса идентична величине , а следовательно, . Кроме того, чтобы получить агрегаты порядка -1 из агрегатов нулевого порядка, необходимо разбить шар, который мы считали однородным и обнаружить, что он состоит из семи меньших шаров. На этом этапе правило распространяется и на радиусы, меньшие единицы. Рассматривая полученное распределение массы по всему 3-пространству, мы видим, что оно чрезвычайно неоднородно, хотя на фрактале Фурнье ему в однородности нет равных. (Вспомните рис. 120.) В частности, любые две геометрически одинаковые части вселенной Фурнье содержат одинаковые массы. Предлагаю такое распределение массы называть фрактально гомогенным. < Предыдущее определение сформулировано в терминах масштабно-инвариантных фракталов, но концепция фрактальной гомогенности в общем случае гораздо шире. Она применима к любому фракталу, для которого положительна и конечна хаусдорфова мера в размерности . Фрактальная гомогенность требует, чтобы масса, содержащаяся в множестве, была пропорциональна хаусдорфовой мере этого множества. ► ВСЕЛЕННАЯ ФУРНЬЕ КАК КАНТОРОВА ПЫЛЬ. РАСШИРЕНИЕ Д0 Я надеюсь, что читателя не сбило с толку небрежное употребление фрактальной терминологии в начальных разделах этой главы. Очевидно, что Фурнье, сам того не осознавая, шел путем, параллельным пути своего современника Кантора. Основная разница заключается в том, что конструкция Фурнье вложена в пространство, а не в интервал на прямой. Для вящего усиления сходства достаточно заменить шарообразные агрегаты Фурнье на блоки (заполненные кубы). Каждый агрегат нулевого порядка становится блоком, длина стороны которого равна 1, и включает в себя 7 меньших агрегатов со стороной 1/7: центр одного из них совпадает с центром исходного куба, а остальные шесть касаются центральных подквадратов на гранях исходного куба. Ниже мы рассмотрим, как получил значение из фундаментального физического феномена Фурнье, и как к тому же результату пришел Хойл. С геометрической же точки зрения, случай является особым, даже если на протяжении всего построения придерживаться формы восьмигранника и значения . Так как шары не перекрывают друг друга, величина может принимать любое значение в интервале от 3 до бесконечности, в результате чего получаем закон , где на всем интервале от 0 до . Далее, взяв любое , удовлетворяющее неравенству , можно, изменяя , легко построить различные варианты модели Фурнье с данной размерностью. МОДЕЛЬ ШАРЛЬЕ И ДРУГИЕ ФРАКТАЛЬНЫЕ ВСЕЛЕННЫЕ Вышеописанные построения не избежали ни одного из недостатков, характерных для первых фрактальных моделей. Сильнее всего бросается в глаза то, что модель Фурнье, подобно модели кривой Коха в главе 6 и модели канторовой пыли в главе 8, до гротескности правильна. Для исправления ситуации Шарлье [77, 78] предложил предоставить и возможность переходить с одного иерархического уровня на другой, принимая значения и . Репутация Шарлье в научных кругах была столь высока, что, несмотря на все его щедрые похвалы Фурнье, высказанные на всех ведущих языках науки того времени, даже исходную модель вскоре стали приписывать знаменитому интерпретатору, а не никому не известному автору. Новая модель широко обсуждалась в то время, особенно в [516, 517, 518, 519]. Более того, она привлекла внимание весьма влиятельного Эмиля Бореля, чьи комментарии в [45] очень проницательны, хотя и несколько суховаты. Однако с той поры, если не считать нескольких судорожных попыток вытащить ее на свет, модель Шарлье пребывает в забвении (не очень убедительные причины такого забвения изложены в [445], с. 20-22 и 408-409). Тем не менее, умирать она упорно не желает. Основная идея к сегодняшнему дню была уже много раз открыта разными исследователями независимо друг от друга, особенно рекомендую заглянуть в [303]. (А еще см. раздел ПОЛЬ ЛЕВИ в главе 40.) Наиболее важным я, однако, считаю тот факт, что фрактальная основа вселенной Фурнье имплицитно присутствует в рассуждениях о турбулентности и галактиках в работе [579] (см. главу 10) и в модели галактического генезиса, предложенной Хойлом в [229] (ее мы рассмотрим чуть ниже). Главная фрактальная составляющая присутствует и в моих моделях (см. главы с 32 по 35). В этом свете возникает вопрос: может ли модель распределения галактик не быть фракталом с одним или двумя порогами? Думаю, что нет. Если мы согласны с тем, что распределение должно быть масштабно-инвариантным (причины необходимости этого изложены в главе 11), и с тем, что множество, на котором концентрируется материя, не является стандартным масштабируемым множеством, у нас не остается иного выбора, кроме признания фрактальности этого множества. Принимая во внимание важность масштабной инвариантности, нетрудно понять, почему немасштабируемое обобщение Шарлье модели Фурнье было с самого начала обречено. < Оно, кстати, позволяет величине изменяться в зависимости от то в пределах двух границ, и . Вот и еще одна тема для обсуждения: эффективная размерность не обязательно должна иметь одно-единственное значение, это значение может плавать между верхним и нижним пределами. К этой теме мы еще вернемся в главе 15. ► ПОЧЕМУ ФУРНЬЕ ОЖИДАЛ D = 1? Обсудим теперь весьма впечатляющую аргументацию, которая привела Фурнье к выводу, что показатель должен быть равен 1 (см. [152], с. 103). Эта аргументация сама по себе является серьезным доводом в пользу того, чтобы имя ее автора не было забыто. Рассмотрим галактический агрегат произвольного порядка с массой и радиусом . Отбросив бесплодные сомнения и применив к данному случаю формулу для объектов, обладающих сферической симметрией, допустим, что гравитационный потенциал на поверхности сферы равен ( — гравитационная постоянная). Звезда, падающая на нашу Вселенную, сталкивается с ее поверхностью на скорости . Согласно Фурнье, из того факта, что ни одна доступная наблюдению звезда не движется со скоростью, превышающей 1/300 от скорости света, можно вывести очень важное заключение. Масса, содержащаяся внутри мирового шара, возрастает прямо пропорционально его радиусу, а не объему, или, иными словами, плотность вещества внутри мирового шара обратно пропорциональна площади его поверхности... Поясним последнее утверждение — потенциал на поверхности сферы всегда одинаков, так как он прямо пропорционален массе вещества внутри сферы и обратно пропорционален расстоянию от центра. Как следствие, звездные скорости, близкие к скорости света, не являются распространенным явлением в любой части Вселенной. СТВОРАЖИВАНИЕ ПО ХОЙЛУ; КРИТЕРИЙ ДЖИНСА Иерархическое распределение фигурирует и в теории Хойла (см. [229]), согласно которой галактики и звезды образуются посредством каскадного процесса, причем начинается этот процесс с однородного газа. Рассмотрим газовое облако массы , нагретое до температуры и распределенное с однородной плотностью внутри шара радиуса . Как показал Джине, при возникает «критическая» ситуация. (Здесь — постоянная Больцмана, a — числовой коэффициент.) Находясь в критическом состоянии, первичное газовое облако нестабильно и неизбежно должно сжаться. Хойл постулирует, что (а) величина достигает критического значения где-то в самом начале, (б) сжатие прекращается, когда объем газового облака уменьшается до 1 /25 от первоначального объема, и (в) каждое облако на этом этапе распадается на пять меньших облаков с одинаковыми размерами, массами и радиусами . То есть процесс приходит к тому же месту, на каком начался: результатом его является нестабильное состояние, за которым следует второй этап сжатия и разделения, затем — третий и т. д. Створаживание прекращается лишь тогда, когда облака становятся настолько непрозрачными, что задерживают образующееся при сжатии газа тепло внутри. Как и в различных других областях, в которых встречаются подобные каскадные процессы, я предлагаю и к этому случаю применить общую терминологию, т. е. пять облаков мы будем называть творогом, а сам каскадный процесс — створаживанием. Как я уже упоминал при введении последнего термина, я просто не мог удержаться от аллюзий с галактиками. Фурнье ради удобства графического изображения своей модели вводит , Хойл же утверждает, что физически обоснованным является значение . Детализация геометрической иллюстрации Фурнье выходит за всякие — разумные или необходимые — рамки. Высказывания Хойла относительно пространственной структуры творога, напротив, довольно туманны. Детальной реализации модели Хойла нам придется подождать до главы 23, где мы рассмотрим случайное створаживание. Как бы то ни было, упомянутые расхождения не имеют принципиального значения: главным является тот факт, что , т. е. показатель должен стать неотъемлемой частью нашего построения, если мы хотим, чтобы створаживание завершалось тем же состоянием, с которого оно начиналось, — а именно, нестабильностью Джинса. Кроме того, если длительность первого этапа принять за 1, то, согласно данным по газовой динамике, длительность того этапа составит . Следовательно, общая длительность всего процесса, состоящего из бесконечного количества этапов, не превышает 1,2500. ЭКВИВАЛЕНТНОСТЬ ПОДХОДОВ ФУРНЬЕ И ХОЙЛА К ВЫВОДУ D =1 На границе нестабильного газового облака, удовлетворяющего критерию Джинса, скорость и температура связаны соотношением , так как равно и (Фурнье), и (Джине). Вспомним теперь о том, что в статистической термодинамике температура газа прямо пропорциональна среднеквадратической скорости его молекул. Значит, из комбинации критериев Фурнье и Джинса можно предположить, что на границе облака скорость падения макроскопического объекта прямо пропорциональна средней скорости его молекул. Тщательный анализ роли температуры в критерии Джинса непременно покажет, что эти два критерия эквивалентны. < Вероятнее всего, аналогия распространяется и на справедливость отношения внутри галактик, о чем сообщает Валленквист в [583]. ► ПОЧЕМУ D = 1, 23, А НЕ D = 1? Расхождение между эмпирическим значением и теоретическим значением Фурнье и Хойла поднимает важную проблему. П. Дж. Э. Пиблс рассмотрел ее в 1974 г. с позиций теории относительности. В его труде [467] получили исчерпывающее освещение физический и статистический (но не геометрический) аспекты упомянутой проблемы. ФРАКТАЛЬНАЯ РАЗМЕРНОСТЬ НЕБА Небо — это проекция Вселенной. Для получения этой проекции каждая точка Вселенной сначала описывается сферическими координатами , и , а затем координата заменяется на 1. Если Вселенная представляет собой фрактал с размерностью , а начало системы отсчета принадлежит этой самой Вселенной (см. главу 22), то структура проекции, как правило, определяется следующей альтернативой: подразумевает, что проекция покрывает некую ненулевую область неба, в то время как означает, что сама проекция имеет фрактальную размерность . < Как показано на рис. 141 и 143, «правило» не лишено исключений, обусловленных структурой фрактала и/или/ выбором точки отсчета. О таких правилах часто говорят «истинно с вероятностью 1». ► ЗАМЕЧАНИЕ ПО ПОВОДУ ЭФФЕКТА ПЫЛАЮЩЕГО НЕБА (НЕВЕРНО НАЗЫВАЕМОГО ПАРАДОКСОМ ОЛЬБЕРСА) Правило из предыдущего раздела имеет непосредственное отношение к мотивации, побуждавшей различных исследователей (включая Фурнье) открывать собственные варианты фрактальной Вселенной. Они понимали, что такие вселенные геометрически «отменяют» эффект пылающего неба, который еще часто (но неверно) называют парадоксом Олъберса. Если допустить, что распределение небесных тел равномерно (т. е. во всех масштабах), то небо над нами должно быть почти равномерно освещено и ночью, и днем, причем яркость этого освещения должна быть сравнима с солнечной. Парадокс этот физиков больше не интересует, будучи сведен на нет теорией относительности, теорией расширяющейся Вселенной и другими соображениями. Однако его кончина имела занятный побочный эффект: многочисленные комментаторы принялись цитировать свои излюбленные объяснения эффекта пылающего неба — одни в надежде оправдаться за пренебрежительное отношение к кластеризации, другие же, напротив, напрочь отрицая ее реальность. Очень странная, надо сказать, точка зрения. Даже если предположить, что кластеризация галактик никак не связана с отсутствием эффекта пылающего неба, она все равно существует — и требует надлежащего изучения. К тому же, как мы увидим в главе 32, концепция расширяющейся Вселенной совместима не только со стандартной, но и с фрактальной гомогенностью. Эффект пылающего неба объясняется очень просто. Поскольку количество излучаемого звездой света прямо пропорционально площади ее поверхности, количество света, достигающее наблюдателя, находящегося от звезды на расстоянии , должно быть , но площадь видимой поверхности звезды также . Таким образом, отношение количества света к видимому сферическому углу не зависит от . Кроме того, если распределение звезд во Вселенной равномерно, то практически любое направление взгляда рано или поздно встретит какую-нибудь звезду. Следовательно, небо освещено звездным светом равномерно и выглядит пылающим. (Лунный диск в этом случае образует исключительно темную область — по крайней мере, при отсутствии атмосферной диффузии.) Если же допустить, что Вселенная фрактальна и что ее размерность , то парадокс разрешается сам собой. В этом случае проекция Вселенной на небесный свод является фрактальным множеством той же размерности , т. е. множеством нулевой площади. Даже если звезды имеют ненулевой радиус, большая часть направлений уходит в бесконечность, не встречая на своем пути ни одной звезды. Если смотреть вдоль этих направлений, то мы увидим только черноту ночного неба. Если за интервалом, в котором , следует интервал, в котором , то фон неба будет не строго черным, но чрезвычайно слабо освещенным. На эффект пылающего неба обратил внимание еще Кеплер вскоре после того, как Галилей в «Звездном послании» благожелательно отозвался об идее безграничной Вселенной. В своей «Беседе со звездным посланцем» (1610) Кеплер высказал следующее возражение: «Нимало не колеблясь, Вы заявляете, что взгляду доступны более 10000 звезд... Если это так и если [звезды] той же природы, что и наше Солнце, то почему все эти солнца в совокупности не превосходят наше Солнце в яркости?... Может быть их затмевает эфир? Ни в малейшей степени... Совершенно очевидно, что наш мир никоим образом не может принадлежать беспорядочному рою из бесчисленных иных миров» (см. [500], с. 34-35). Вывод был довольно спорный, однако об аргументации не забыли — свидетельством тому может служить замечание Эдмунда Галлея (сделанное им в 1720 г.): «Я слышал еще об одном возражении, которое гласит, что если бы число неподвижных звезд было более чем конечным, то весь свод их видимой сферы сплошь светился бы». Позднее это возражение обсуждалось де Шезо и И. Г. Ламбертом, однако авторство его приписали большому другу Гаусса немецкому астроному Ольберсу. Термин «парадокс Ольберса», которым с тех пор называют это противоречие, скандален, но симптоматичен. Результаты наблюдений, попавшие в разряд «не подлежащих классификации» (см. с. 51), часто приписываются первому же представителю Официального Большинства, который украсит их вполне классифицируемой оберткой, пусть даже и временной. Обсуждение предмета в исторической перспективе можно найти в [160, 438, 445, 108, 601, 239, 82, 197]. ЗАМЕЧАНИЕ О НЬЮТОНОВСКОМ ТЯГОТЕНИИ Преподобный Бентли все донимал Ньютона одним наблюдением, тесно связанным с эффектом пылающего неба: если распределение звезд однородно, то сила, с какой они действуют друг на друга, бесконечна. Можно добавить, что их гравитационный потенциал также бесконечен. И что любое распределение, в котором , даст при больших бесконечный потенциал во всех случаях, кроме . Современная теория потенциала (теория Фростмана) подтверждает тот факт, что между ньютоновским тяготением и значением существует некая особенная связь. Полученный Фурнье и Хойлом показатель также следует отнести к проявлениям этой связи. < Положение Фурнье о том, что «гравитационный потенциал на поверхности сферы всегда одинаков», является центральным в современной теории потенциала. ► ЗАМЕЧАНИЕ О ТЕОРИИ ОТНОСИТЕЛЬНОСТИ < У де Вокулера (см. [104]) сказано: «Согласно теории относительности, следует считать, что для того, чтобы шар из стационарного вещества был видимым в оптическом диапазоне, его радиус должен быть больше предела Шварцшильда , где — скорость света. На графике зависимости средней плотности р различных космических систем от их характеристического радиуса точка определяет верхний предел. Отношение можно назвать коэффициентом заполнения Шварцшильда. Для наиболее распространенных астрономических тел (звезд) или систем (галактик) коэффициент заполнения очень мал, порядка ». Квадрат отношения скоростей, постулированный Фурнье, равен — как раз в середине упомянутого интервала. ► АГГЛЮТИНИРОВАННАЯ ФРАКТАЛЬНАЯ ВСЕЛЕННАЯ? Многие исследователи полагают, что можно объяснить образование звезд и других небесных объектов с помощью восходящего каскада (т. е. постепенной агглютинации сильно рассеянных частиц пыли во все большие куски), не желая ничего слышать о нисходящем каскаде а 1а Хойл (т. е. постепенной фрагментации очень больших и рассеянных масс на все меньшие части). Похожая альтернатива возникает в связи с каскадами, постулированными в теории турбулентности (см. главу 10). Ричардсонов каскад протекает по нисходящей ко все более мелким вихрям, однако в процессе могут участвовать и восходящие каскады (см. главу 40, раздел ЛЬЮИС ФРАЙ РИЧАРДСОН). Таким образом, можно надеяться, что взаимоотношения между нисходящими и восходящими каскадами получат вскоре надлежащее объяснение. ФРАКТАЛЬНЫЕ МАССИВЫ ТЕЛЕСКОПОВ Вряд ли можно найти более подходящий завершающий штрих для этой дискуссии, чем замечание относительно инструментов, с помощью которых производится наблюдение галактик. Дайсон [126] предлагает для улучшения качества наблюдения заменять большие одиночные телескопы массивами из малых телескопов. Диаметр каждого из малых телескопов должен составлять около 0,1м (размер наименьшего оптически существенного атмосферного возмущения), их центры должны образовывать фрактально иерархическую схему, а соединение между телескопами обеспечат интерферометры Карри. Грубый анализ приводит к выводу, что в качестве подходящего значения размерности следует взять 2/3. Вот заключение самого Дайсона: «Трехкилометровый массив из 1024 десятисантиметровых телескопов, соединенных между собой 1023 интерферометрами, — не самое практичное на сегодняшний день предложение. [Я выдвинул его] в качестве теоретической идеи, чтобы показать, что здесь, в принципе, можно сделать». ОБЗОР СЛУЧАЙНЫХ ФРАКТАЛЬНЫХ МОДЕЛЕЙ СКОПЛЕНИЙ ГАЛАКТИК Если верить тому, что можно эффективно описать распределение галактик с помощью нечаянно обнаруженных фрактальных моделей, не отличающихся ни сложностью, ни универсальностью, не стоит удивляться, что намеренно фрактальные случайные модели могут снабдить нас гораздо более эффективными описаниями. Начнем с того, что мы сможем значительно лучше понять створаживание Хойла, рассмотрев его в надлежащем окружении, т. е. среди случайных фракталов (см. главу 23). Еще большей значимостью обладают, на мой взгляд, разработанные мною случайные модели, о которых мы поговорим в главах с 32 по 35. Один из доводов в пользу рассмотрения нескольких моделей заключается в том, что за улучшение качества описания приходится «платить» возросшей сложностью. Второй довод — каждая модель строится на особой фрактальной пыли, каждая из которых заслуживает отдельного рассмотрения. Рассмотрим вкратце эти модели в логическом порядке. Примерно в 1965 г. я задался целью снабдить соотношение при соответствующей моделью, в которой «центр Вселенной» отсутствовал бы как понятие. Впервые я достиг этой цели с помощью модели случайного блуждания, описываемой в главе 32. Затем, в качестве альтернативы, я разработал модель трем, сущность которой заключалась в том, что из пространства вырезалась некая совокупность взаимно независимых и размещенных случайным образом трем случайного радиуса, причем верхняя граница радиуса могла достигать верхнего порога , который мог быть конечным или бесконечным. Поскольку обе модели были выбраны исключительно из соображений формальной простоты, меня приятно удивило наличие у них прогнозирующей ценности. Мои теоретические корреляционные функции [383] оказались в хорошем согласии с подобранными по кривым функциями, приведенными у Пиблса (см. [467], с. 243-249). < Точнее, два моих приближения совпали на двухточечной корреляции, случайные блуждания дали хорошую трех- и плохую четырехточечную корреляции, а сферические тремы оказались на высоте во всех известных корреляциях. ► К сожалению, примеры, генерируемые этими моделями, выглядят совершенно нереалистично. Воспользовавшись понятием, которое я разработал специально для этой цели и о котором расскажу в главе 35, можно сказать, что мои ранние модели демонстрируют неприемлемые лакунарные свойства. В случае модели трем этот недостаток можно исправить, введя более сложные формы трем. Для модели случайного блуждания я использовал менее лакунарный «субординатор». Таким образом, изучение скоплений галактик значительно стимулировало развитие фрактальной геометрии. В настоящее же время диапазон применений фрактальной геометрии при исследовании скоплений галактик значительно расширился, выйдя далеко за рамки тех генеральных уборок и отладок, что мы предприняли в этой главе. ОГРАНЕННЫЕ АЛМАЗЫ, ПОХОЖИЕ НА ЗВЕЗДЫ Распределение алмазных залежей в земной коре очень напоминает распределение звезд и галактик на небесном своде. Представьте себе большую карту мира, на которой каждая алмазная копь, каждое богатое месторождение — разрабатываемое сейчас или уже заброшенное — отмечено булавкой. Рассматривая карту с достаточно большого расстояния, мы увидим, что плотность распределения булавок чрезвычайно неравномерна. Тут и там разбросано несколько отдельных булавок, однако большая часть концентрируется в немногочисленных благословенных (или проклятых) областях. Поверхность земли внутри этих областей, в свою очередь, вовсе не вымощена равномерно алмазами. Взглянув на каждую из них вблизи, мы вновь увидим, что большая часть территории остается пустой, в то время как немногочисленные рассеянные подобласти демонстрируют значительно возросшую концентрацию алмазов. Этот процесс можно продолжать на протяжении нескольких порядков величины. Не возникает ли у вас неодолимого желания применить в этом контексте концепцию створаживания? Со своей стороны скажу, что подобная модель существует, предложил ее де Вис, а рассмотрим мы ее в главе 39 в разделе НЕЛАКУНАРНЫЕ ФРАКТАЛЫ. В книге Фурнье [152] к этой иллюстрации предлагается следующее пояснение: «Мультивселенная, построенная по принципу креста или восьмигранника, не является планом нашего мира, но помогает показать возможность существования бесконечного ряда подобных последовательных вселенных без возникновения эффекта «пылающего неба». Количество материи в каждой мировой сфере прямо пропорционально ее радиусу. Это условие является необходимым для соблюдения законов тяготения и излучения. В некоторых направлениях небо выглядит совершенно черным — несмотря на то, что ряд вселенных бесконечен. «Мировым числом» в данном случае является , а не , как в реальном мире». В терминах, вводимых в главе 34, вселенная с и обладает очень низкой лакунарностью, но чрезвычайно стратифицирована. Если мы попытаемся передать рис. 141 в точном масштабе, то его не только будет очень сложно напечатать и рассмотреть, он еще и окажется способен ввести зрителя в заблуждение. В самом деле, на нем изображена вовсе не Вселенная с размерностью , а всего лишь ее проекция на плоскость, причем размерность этой проекции равна . Поэтому, дабы не оставить ложного впечатления, спешим представить регулярную плоскую конструкцию в духе Фурнье с размерностью и коэффициентом подобия вместо . Построение продолжено на один этап дальше, чем это возможно на рис. 141.
|