Читать в оригинале

<< ПредыдущаяОглавлениеСледующая >>


11 ФРАКТАЛЬНЫЕ ОСОБЕННОСТИ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ

Эта глава посвящена первому пересечению фрактальной геометрии Природы с основным направлением математической физики. Тема эта представляется мне настолько важной, что заслуживает отдельной главы. Читатели, интересы которых лежат в других областях, могут эту главу спокойно пропустить и двигаться дальше.

РАСКОЛ В ТЕОРИИ ТУРБУЛЕНТНОСТИ

Основным недостатком текущего состояния теоретических исследований турбулентности является то, что они разделены, как минимум, на две не связанные друг с другом области. В одной царит предложенная Колмогоровым в 1941 г. (см. [276]) весьма успешная феноменология (о которой мы подробно поговорим в главе 30). Вторая имеет дело с дифференциальными уравнениями гидродинамики, выведенными для невязких жидкостей Эйлером, а для вязких — Навье (и Стоксом). Эти области никак не соотносятся между собой. Если «объяснить» и «понять» означает «свести к фундаментальным уравнениям», то теория Колмогорова еще не объяснена и не понята. Решать уравнения о движении жидкости она также не помогает.

На первый взгляд может показаться, будто сделанное мною в предыдущей главе утверждение о том, что турбулентное рассеяние является гомогенным не на всем пространстве, а лишь на некотором фрактальном подмножестве, только углубляет пропасть между областями. Но я заявлял и заявляю: это не так. И у меня есть свидетельства в свою защиту.

ВАЖНОСТЬ ОСОБЕННОСТЕЙ

Припомним процедуру, которая позволяет успешно решать уравнения математической физики. Обычно сначала составляется список, который объединяет результаты, полученные решением уравнения при особых условиях, с результатами, предположенными на основании физических наблюдений. Далее, опуская связанные с этими решениями детали, мы составляем список элементарных «особенностей», характерных для рассматриваемой задачи. Начиная с этого этапа, часто бывает возможно решать более сложные варианты уравнения в первом приближении посредством идентификации подходящих особенностей и связывания их в требуемую последовательность. Именно так студент-аналитик строит график рациональной функции. Разумеется, стандартные особенности — это стандартные евклидовы множества, т. е. точки, кривые и поверхности.

ПРЕДПОЛОЖЕНИЕ: ОСОБЕННОСТИ ДВИЖЕНИЯ ЖИДКОСТИ - ЭТО ФРАКТАЛЬНЫЕ МНОЖЕСТВА [386]

Рассматривая в таком свете сложности, возникающие при описании турбулентности с помощью решений Эйлера и Навье-Стокса, я склонен счесть их следствием того факта, что не существует стандартной особенности, которая объясняла бы воспринимаемые нами на интуитивном уровне характеристические признаки турбулентности.

Исходя из этого, я заявляю [386], что турбулентные решения фундаментальных уравнений включают в себя особенности или «почти особенности» совершенно иного рода. Эти особенности представляют собой локально масштабно-инвариантные фрактальные множества, а почти особенности — приближения к ним.

Самым простым основанием для данного утверждения можно считать такое соображение: раз уж стандартные множества оказались неспособны адекватно описать феномен, ничто не мешает попробовать следующие по изученности множества. Существуют, однако, и более конкретные основания.

НЕВЯЗКИЕ ЖИДКОСТИ (СЛУЧАЙ ЭЙЛЕРА)

Первое конкретное предположение. В моем вышеизложенном утверждении говорится, в частности, и о том, что особенности решений уравнений Эйлера представляют собой фрактальные множества.

Основания. Эта вера зиждется на одном очень старом правиле: симметрии и другие инвариантности, представленные в уравнении, «должны» быть отражены и в решении уравнения. (Самодостаточное, тщательное и красноречивое описание можно найти в четвертой главе книги Биркгофа «Гидродинамика» [37].) Безусловно, сохранение симметрии ни в малейшей степени не является всеобщим законом Природы, следовательно, здесь нельзя исключать и возможности «нарушения симметрии». Однако давайте предположим, что симметрия сохраняется, и посмотрим, что получится. Поскольку уравнения Эйлера независимы от масштаба, их типичные решения также должны быть независимы от масштаба, причем это условие должно соблюдаться и для любых особенностей, которыми они могут обладать. А так как безуспешность всех предшествующих попыток мы принимаем как свидетельство того, что эти особенности не являются стандартными точками, линиями или поверхностями, они должны быть фракталами.

Может, конечно же, случиться так, что форма границы и начальные скорости окажутся ограничены неким масштабом. Здесь, однако, следует учитывать еще одну возможность — локальное поведение решений может определяться «принципом отсутствия ощущения границы». В этом случае решения должны быть локально безмасштабны.

Исследования Александра Чорина. В 1981 г. Чорин [80] применил к анализу диапазона инерции в полностью установившейся турбулентности метод вихрей, чем весьма серьезно укрепил мои позиции. Чорин установил, что сильно растянутая завихренность собирается в тело уменьшающегося объема, размерность которого  вполне согласуется с выводами, сделанными в главе 10. Поправка к колмого- ровским показателям, , также согласуется с экспериментальными данными. Из расчетов следует, что решения уравнений Эйлера в трех измерениях становятся несправедливыми при конечном значении времени.

В своей следующей, неопубликованной, работе Чорин подходит еще ближе к экспериментальному значению: .

ВЯЗКИЕ ЖИДКОСТИ (СЛУЧАЙ НАВЬЕ-СТОКСА)

Второе конкретное предположение. Далее я утверждаю, что особенности решений уравнений Навье-Стокса могут быть только фракталами.

Неравенство размерности. На интуитивном уровне мы чувствуем, что решения уравнений Навье-Стокса должны непременно быть более гладкими, а значит — менее особыми, нежели решения уравнений Эйлера. Отсюда возникает следующее предположение: размерность особенностей в случае Эйлера превышает таковую в случае Навье-Стокса. Переход к нулевой вязкости можно, вне всякого сомнения, считать особенностью.

Почти особенности. Заключительное предположение моего общего утверждения касается пиков рассеяния, входящих в понятие перемежаемости: они представляют собой особенности Эйлера, сглаженные вязкостью.

Исследования В. Шеффера. Рассмотрение моих предположений для случая вязких жидкостей было впервые предпринято В. Шеффе- ром; некоторое время назад к нему присоединились и другие исследователи, желающие взглянуть в новом свете на поведение конечного или бесконечного объема жидкости, подчиняющегося уравнениям Навье-Стокса и обладающего в момент времени  конечной кинетической энергией.

Шеффер [510] исходит из допущения, что особенности действительно имеют место, и показывает, что они непременно удовлетворяют следующим теоремам. Во-первых, фрактальная размерность их проекции на временную ось не превышает 1/2. Во-вторых, их проекция на пространственные координаты представляет собой в лучшем случае фрактал с размерностью 1.

Впоследствии обнаружилось, что первый из вышеприведенных результатов является следствием одного замечания в старой и довольно известной работе Лере [301], которая внезапно обрывается после получения формального неравенства, из которого как раз и следует первая теорема Шеффера. Хотя вряд ли ее можно назвать следствием — скорее, просто новая формулировка. Однако подобает ли нам относиться к этому свысока? Перенос чужих выводов в терминологически более изящную форму редко (и небезосновательно) расценивается как научное достижение, однако мне кажется, что для данного случая следует сделать исключение. Упомянутое неравенство из теоремы Лере было с практической точки зрения почти бесполезным, пока следствие Мандельброта-Шеффера не представило его миру в должной перспективе.

Все случаи применения размерности Хаусдорфа-Безиковича (во многом, кстати, шаблонные) в последних работах по уравнениям Навье-Стокса могут быть непосредственно выведены из моих предположений.

ОСОБЕННОСТИ ДРУГИХ ФИЗИЧЕСКИХ НЕЛИНЕЙНЫХ УРАВНЕНИЙ

Другие явления, которые, как мне представляется, следует описывать с помощью масштабно-инвариантных фракталов, не имеют ничего общего ни с Эйлером, ни с Навье и Стоксом. Например, распределение галактик определяется уравнениями гравитации. Однако аргумент о сохранении симметрии применим ко всем масштабно-инвариантным уравнениям. В сущности, довольно туманное замечание Лапласа (см. раздел МАСШТАБНАЯ ИНВАРИАНТНОСТЬ ПО ЛЕЙБНИЦУ И ЛАПЛАСУ, глава 41) можно теперь (задним числом!) истолковать так, будто оно намекает на тему главы 9.

В более общем смысле, фрактальный характер особенностей можно, скорее всего, проследить в неких обобщенных признаках, общих для самых различных уравнений математической физики. Может, это просто какой-то очень широкий род нелинейности? Мы еще вернемся к этому вопросу в главе 20 — правда, в несколько иной терминологии.

 



<< ПредыдущаяОглавлениеСледующая >>