I ВВЕДЕНИЕ1 ТЕМАПочему геометрию так часто называют «холодной» и «сухой»? Одна из причин — ее неспособность описать форму облака, горы, дерева или береговой линии. Облака не являются сферами, горы — конусами, береговые линии нельзя изобразить с помощью окружностей, кору деревьев не назовешь гладкой, а путь молнии — прямолинейным. В более общем виде я заявляю, что многие формы Природы настолько неправильны и фрагментированы, что в сравнении с евклидовыми фигурами (евклидовым в данной работе мы будем называть все, что относится к обычной геометрии) Природа демонстрирует не просто более высокую степень, но совершенно иной уровень сложности. Количество различных масштабов длины в естественных формах можно считать бесконечным для каких угодно практических задач. Существование таких феноменов бросает нам вызов и побуждает заняться подробным изучением тех из форм, которые Евклид отложил в сторону из-за их «бесформенности» — исследовать, так сказать, морфологию «аморфного». Математики же пренебрегли этим вызовом и предпочли бежать от природы путем изобретения всевозможных теорий, которые никак не объясняют того, что мы видим или ощущаем. Рискнув ответить на вызов, я задумал и разработал новую геометрию Природы, а также нашел для нее применение во многих разнообразных областях. Новая геометрия способна описать многие из неправильных и фрагментированных форм в окружающем нас мире и породить вполне законченные теории, определив семейство фигур, которые я называю фракталами. Наиболее полезные фракталы включают в себя элемент случайности; как правильность, так и неправильность их подчиняется статистическим законам. Кроме того, описываемые здесь фигуры стремятся к масштабной инвариантности, т. е. степень их неправильности и/или/ фрагментации неизменна во всех масштабах. Центральное место в настоящей работе занимает фрактальная (или хаусдорфова) размерность. Одни фрактальные множества представляют собой кривые или поверхности, другие — несвязную «пыль»; есть и такие, чья форма столь причудлива, что ни наука, ни искусство не в состоянии предложить подходящее для них название. Я предлагаю читателю ознакомиться с ними прямо сейчас, просмотрев иллюстрации в книге. На многих из этих иллюстраций представлены формы, которые до сих пор никто не рассматривал, на других же показаны давно известные конструкции, причем нередко впервые именно в таком виде. В самом деле, хотя фрактальная геометрия как таковая появилась лишь в 1975 г., многие из ее концепций и инструментов были разработаны раньше — пусть и для целей, в корне отличных от моей. Старые камни в кладке стен нового здания обеспечили фрактальной геометрии чрезвычайно мощный строго математический фундамент, в результате чего математика обогатилась новыми захватывающими идеями и проблемами. И все же, в рамках данной работы меня не интересуют ни абстракция, ни обобщение ради самих себя; эта книга не является ни учебником, ни математическим трактатом. Несмотря на ее размер, я склонен определить ее жанр как научное эссе, так как изложенный в ней материал представляет только мою собственную точку зрения и ни в коем случае не претендует на всеохватывающую полноту. Кроме того, как и во многих других эссе, в ней немало отступлений и интерлюдий. Такой неформальный подход призван помочь читателю избежать тех частей текста, которые лежат вне области его интересов или за пределами его компетенции. По всей книге разбросано множество «легких» в математическом смысле мест, особенно ближе к концу. Листайте книгу, где-то останавливаясь, что-то пропуская — по крайней мере, при первом и втором прочтении. ИЗЛОЖЕНИЕ ЗАДАЧ В этом эссе сводятся вместе аналитические методы различных наук с целью создания нового философско-математического синтеза. Таким образом, оно может рассматриваться и как сборник прецедентов, и как манифест. Кроме того, оно открывает изумленному взгляду совершенно новый мир пластичной красоты. СБОРНИК НАУЧНЫХ ПРЕЦЕДЕНТОВ Термином «сборник прецедентов» юристы называют собрание реальных, имевших место в юридической практике случаев, объединенных общей темой. В науке соответствующего термина нет, поэтому я предлагаю его позаимствовать. Наиболее важные случаи требуют многократного рассмотрения, однако и менее значительные также заслуживают внимания; на интенсивность обсуждения нередко влияет и наличие похожих «прецедентов». Рассмотрение одного из прецедентов касается широко известного приложения широко известного математического аппарата к одной широко известной задаче природы; я имею в виду винерову геометрическую модель физического броуновского движения. К нашему удивлению, винеровский процесс нигде больше непосредственно не применим, и это наводит на мысль, что среди феноменов высокой степени сложности, с которыми мы имеем дело, броуновское движение представляет собой особый случай, исключительно простой и неструктурированный. Тем не менее, я включил броуновское движение в настоящую книгу, поскольку многие весьма полезные фракталы представляют собой не что иное, как тщательные его модификации. Другие исследования затрагивают, главным образом, мою собственную работу, ее дофрактальные предпосылки и дальнейшее развитие, которым она обязана трудам тех ученых, которые откликнулись на предшествующие данному эссе 1975 и 1977 гг. Некоторые «прецеденты» относятся к высокозрелищным горным ландшафтам и тому подобным вещам, тем самым выполняя, наконец, обещание, заложенное давным-давно в слово «геометрия». Другие имеют дело с субмикроскопическими ансамблями частиц — важнейшим объектом изучения для современной физики. Основная тема некоторых примеров носит несколько эзотерический характер. В других примерах тема близка и знакома, однако ее геометрические аспекты не были до сих пор адекватно рассмотрены. В этой связи вспоминается замечание Пуанкаре о том, что есть вопросы, которыми задаемся мы, и вопросы, которые задают себя сами. А вопрос, который уже давно и безответно себя задает, считается детским. Из-за этого в своих предыдущих эссе я неустанно подчеркивал тот факт, что фрактальный подход является одновременно и эффективным, и «естественным». Следует не только принять его с распростертыми объятиями, но еще и поразиться тому, как мы смогли так долго без него обходиться. Во избежание ненужных дискуссий я также сократил в ранних текстах до минимума разрыв между изложением стандартных взглядов и опубликованных материалов, изложением их с новых позиций и представлением своих собственных идей и результатов. В настоящем эссе я, напротив, весьма тщательно разграничиваю заслуги. Кроме того, хочу со всей категоричностью заявить, что я не считаю фрактальную точку зрения панацеей; анализ каждого случая должен оцениваться согласно критериям, принятым в соответствующей области (т.е., как правило, исходя из его способности организовать, объяснить и предсказать), а не рассматриваться как очередной пример чисто математического построения. Поскольку я был вынужден обрывать рассмотрение каждого случая прежде, чем оно принимало узкоспециализированный характер, подробную информацию читателю придется поискать где-то в другом месте. Данное эссе — от начала и до конца — одно сплошное предисловие (в подражание д'Арси Томпсону [568]). Специалист, ожидающий большего, будет разочарован. МАНИФЕСТ: У ГЕОМЕТРИИ ПРИРОДЫ ФРАКТАЛЬНОЕ ЛИЦО Причиной же, собравшей все эти предисловия под одной обложкой, является то, что каждое из них помогает понять другие, так как все они имеют общую математическую структуру. Фримен Дайсон дал однажды очень красноречивое резюме этой моей темы. «Фрактал — это слово, изобретенное Мандельбротом для того, чтобы объединить под одним заголовком обширный класс объектов, которые [сыграли]... историческую роль... в развитии чистой математики. Классическую математику XIX в. от современной математики века XX отделяет великая революция идей. Корни классической математики лежат среди правильных геометрических структур Евклида и поступательной динамики Ньютона. Современная математика начинается с канторо- вой теории множеств и заполняющей пространство кривой Пеано. Исторически революция была вызвана открытием математических структур, не умещавшихся в рамках построений Евклида и Ньютона. Эти новые структуры рассматривались... как «патологические»... как некая «выставка чудовищ», вроде кубистской живописи и атональной музыки, перевернувших примерно в то же время установленные стандарты хорошего вкуса в искусстве. Математики же, сотворившие этих чудовищ, считали их важными свидетельствами того, что мир чистой математики содержит в себе необыкновенное изобилие возможностей, далеко выходящее за рамки тех простых структур, что можно наблюдать в Природе. Математика XX в. расцветала в убежденности, что она уже оставила далеко позади все ограничения, налагаемые на нее ее естественным происхождением. И тут, как отмечает Мандельброт ... Природа сыграла с математиками шутку. Возможно, математикам XIX в. недоставало воображения — Природа же никогда таким недостатком не страдала. Как оказалось, окружающим нас и хорошо знакомым нам объектам всегда были присущи те самые патологические структуры, которые математики изобрели, чтобы избавиться от уз натурализма XIX в.»1. Короче говоря, я лишь подтвердил наблюдение Блеза Паскаля, заключающееся в том, что воображение иссякает прежде Природы. («L'imagination se lassera plutot de concevoir que la nature de fournir».) Тем не менее, фрактальная геометрия не является прямым «приложением» идей, доминирующих в математике XX в. Это — новая отрасль, несколько запоздало родившаяся из кризиса математики, который начался в 1875 г., когда Дюбуа-Реймон впервые сообщил миру о непрерывной недифференцируемой функции, построенной Вейерштрассом ([115], главы 3, 39 и 41). В списке главных действующих лиц кризиса, продолжавшегося приблизительно до 1925 г., отметим такие выдающиеся имена, как Кантор, Пеано, Лебег и Хаусдорф. Этих людей, а вместе с ними и Безиковича, Больцано, Чезаро, Коха, Осгуда, Серпинского и Урысона, вы вряд ли встретите среди авторов эмпирических исследований Природы, однако я заявляю, что влияние трудов этих великих людей оказалось значительно шире рамок их первоначальных замыслов. Я намерен показать, что за упомянутыми безумными творениями лежат необъятные миры, которых так и не увидели ни их создатели, ни несколько поколений последователей, — миры, которые будут небезынтересны тем, кто воспевает Природу, стремясь ей подражать. И снова удивляемся мы — хотя некоторые недавние события должны были бы показать нам, что ничего удивительного тут нет — тому, что «применение языка математики к естественным наукам оказывается непостижимо эффективным ..., дар, которого мы настолько же не понимаем, насколько не заслуживаем. Мы должны быть благодарны за этот дар и надеяться, что будущие исследования не только не обесценят его, но и позволят распространить на многие области человеческого знания, будь то на горе или на радость, ко всеобщему удовольствию или, что гораздо более вероятно, к не менее всеобщему недоумению» [598]. МАТЕМАТИКА, ПРИРОДА, ЭСТЕТИКА Вдобавок ко всему, благодаря фрактальной геометрии мы узнаём о том, что некоторые из наиболее сухих и холодных разделов математики скрывают за внешней суровостью целый мир чистой пластичной красоты, доселе неведомой. «ФРАКТАЛ» И ПРОЧИЕ НЕОЛОГИЗМЫ У римлян была поговорка, согласно которой «назвать — значит узнать»: Nomen est питеп. До того, как я принялся за изучение упомянутых в предыдущих разделах множеств, они были не настолько важны, чтобы требовать для себя особого термина. Однако по мере того, как, благодаря моим усилиям, теряли свои клыки и покорялись классические чудовища, и поднимали головы новые монстры, все более очевидной становилась необходимость как-то их всех называть. Особенно остро эта проблема встала передо мной, когда нужно было дать имя первому предшественнику настоящего эссе. Термин фрактал я образовал от латинского причастия fractus. Соответствующий глагол frangere переводится как ломать, разламывать, т. е. создавать фрагменты неправильной формы. Таким образом, разумно — и как кстати! — будет предположить, что, помимо значения «фрагмен- тированный» (как, например, в словах фракция или рефракция), слово fractus должно иметь и значение «неправильный по форме» — примером сочетания обоих значений может служить слово фрагмент. Словосочетание фрактальное множество мы впоследствии определим строго, сочетания же естественный или природный фрактал я предполагаю применять более свободно для обозначения естественных структур, которые с той или иной целью могут быть представлены в виде фрактального множества. Например, броуновские кривые являются фрактальными множествами, а броуновское движение мы назовем природным фракталом. (Так как слово алгебра происходит от арабского jabara («связывать, соединять»), получается, что фракталы и алгебра — этимологически противоположны.) В своих странствиях по только что открытым или только что заселенным землям я часто испытывал искушение воспользоваться своим правом первооткрывателя и дать имена всем местным достопримечательностям. Вообще, мне кажется, что подходящий неологизм, как правило, удобнее, чем новое значение и без того затертого до дыр термина. Кроме того, нельзя забывать и о том, что первичное значение слова часто так глубоко впечатано в сознание, что его не сотрешь оттуда никакими переопределениями. Вольтер писал в 1730 г.: «Если бы Ньютон не воспользовался в своих трудах словом притяжение1, [Французская] Академия в полном составе прозрела бы и увидела бы, наконец, свет. К несчастью, произнося это слово в Лондоне, он и не подозревал о том, что в Париже оно ничего, кроме смеха, не вызывает». А что можно сказать о таком вот неуклюжем творении: «распределение вероятностей распределения Шварца в пространстве по отношению к распределению галактик»? Для того, чтобы избежать этой ловушки, я выбирал при создании новых терминов, в основном, малоиспользуемые латинские и греческие корни (например, трема), и изредка заимствовал из простой и здравой лексики домохозяек, рабочих и фермеров. Дайте чудовищу какое-нибудь уютное, домашнее имя, и вы удивитесь, насколько легче будет его приручить! Специальными терминами стали у меня такие, например, слова, как пыль, творог и сыворотка. Я также готов отстаивать термин пертайлинг1, который мы будем применять для обозначения полного покрытия некоторой площади плотно прилегающими друг к другу самоподобными плитками (как на мостовой). ИЗЛОЖЕНИЕ ЗАДАЧ (ЗАКЛЮЧЕНИЕ) Суммируя вышеизложенное, отмечу, что в настоящем эссе описаны предлагаемые мной для множества конкретных задач — некоторые из этих задач имеют весьма почтенный возраст — решения с помощью математики (орудие, конечно, тоже не ново, однако таким образом его еще никто не использовал, если не считать математического аппарата броуновского движения). Случаи, с которыми позволяет справляться такая математика, и расширения, которых эти случаи от нее требуют, составляют основу новой научной дисциплины. Ученые мужи будут очень удивлены (я в этом уверен) и обрадованы, обнаружив, что отныне и впредь они получают возможность рассматривать со строгих (но справедливых) количественных позиций те формы, которые раньше им приходилось характеризовать различными «ненаучными» словами — такими, например, как ветвистый, водорослеобразный, волнистый, извилистый, клочковатый, промежуточный, прыщавый, пушистый, рябой, сморщенный, спутанный, странный, шероховатый и т. д. Собственно математики будут удивлены (я надеюсь) и обрадованы и тем, что множества, считавшиеся ранее исключительными [68], становятся в некотором смысле правилом, и тем, что конструкции, полагавшиеся ранее патологическими, естественным образом развиваются из весьма конкретных задач, и тем, что внимательное изучение Природы несомненно разрешит все старые вопросы и предложит взамен множество новых. И все же в данном эссе я избегал чисто специальных проблем. Оно адресовано прежде всего людям науки вообще, а не только специалистам-математикам. Представление каждой новой темы начинается с конкретных примеров. Читатель самостоятельно и постепенно раскрывает для себя природу фракталов — такой путь представляется мне более результативным, нежели внезапное озарение с подачи автора. А что касается искусства, то оно ценно само по себе.
|