ПредисловиеДвадцатый век завершился под знаком революции в области обработки информации. Мы стали свидетелями как быстрого роста объема доступных данных, так и увеличения скорости их обработки и передачи, а также емкости запоминающих устройств. Отчетливо видно, что эти явления не только взаимосвязаны, но и усиливают друг друга. В ситуации лавинобразного нарастания объемов информации и вычислительных мощностей возникает очевидный вопрос, каким образом можно улучшить наши способности к познанию окружающего мира, имея в наличии столь большие и непрерывно растущие технические возможности? Помощь приходит со стороны апробированных классических математических методов, созданных трудами Ньютона, Лейбница, Эйлера и других гениев прошлого, заложивших фундамент современных вычислительных алгоритмов. Благодаря им у нас есть специализированные вычислительные процедуры для распознавания образов и речи, для управления системами различных классов и решения иных аналогичных проблем. Независимые от этого направления исследования в области искусственного интеллекта привели к созданию экспертных и прогностических систем, основанных на символьной обработке и использующих базы правил. Однако все перечисленные выше подходы предполагают использование либо узкоспециализированных вычислительных методик, либо специализированных баз знаний, чаще всего заключенных в жесткий корсет двоичной логики. Еще одно ограничение на применение этих методов связано с фактом, что они не допускают непосредственное решение задач при использовании вычислительных систем с универсальной архитектурой, общей для большинства практических приложений. Таким образом, мы подходим к происхождению и сущности вычислительных технологий, составляющих предмет настоящей книги. Эти технологии, объединяемые в англоязычной литературе под названием Computational Intelligence, позволяют получать непрерывные или дискретные решения в результате обучения по доступным имеющимся данным. Один из подклассов обсуждаемой группы методов составляют нейронные сети, использующие стохастические алгоритмы для обучения модели с учителем или путем самоорганизации. Они предназначены для обработки зашумленных цифровых данных, по которым алгоритмы обучения выстраивают однонаправленные или рекуррентные модели интересующих нас процессов. Эти модели характеризуются регулярной структурой, составленной из нелинейных элементов, объединенных разветвленной сетью линейных соединений и часто дополняемой локальными или глобальными обратными связями. При моделировании процессов возможности нейронных сетей могут усиливаться за счет применения технологии обработки информации, основанной на нечетких множествах и нечетком выводе. Этот метод связан с оцениванием функции принадлежности элементов к множествам с помощью нечетких логических операторов. Предлагаемый подход не только ослабляет требования к точности данных в процессе построения модели, но и позволяет описать сложные системы с помощью переменных, значения которых определяются на интуитивном уровне. Возникающая в результате парадигма моделирования, управления, выработки решений и т.п. ведет к формированию лингвистических аргументов логических функций. Такие функции, описывающие реальные объекты, могут уточняться в процессе обучения по имеющимся данным. Другой подход состоит в формировании правил вывода непосредственно в процессе обучения. Этим и определяется взаимопроникновение и комплементарность нейронных моделей и систем, базирующихся на нечеткой логике. Лингвистические операторы, которые мы используем при повседневном общении, и итерационный процесс обучения вместе ведут к интеллектуальным логико-алгебраическим моделям, определяемым понятием Computational Intelligence (вычислительные технологии). Интеллектуальность в данном случае понимается как способность применять знания, накопленные в процессе обучения, как возможность генерировать правила вывода и как умение обобщать информацию. Важным классом алгоритмов обучения, обогативших нейронные и нечеткие технологии, считаются эволюционные алгоритмы. Они оперируют популяциями хромосом, оцениваемых функциями приспособленности, и используют эволюционную и генетическую обусловленность изменения последовательности битов или чисел. Таким образом, эффективно исследуется пространство возможных решений. Оптимальное решение ищется в серии последовательных приближений аргументов с лучшими значениями функций приспособленности, генерируемых в результате мутации и скрещивания хромосом. Автор этих заметок в качестве председателя Комитета Симпозиума Computational Intelligence: Imitating Life, состоявшегося в Орландо в 1994 г., стоял у истоков слияния этих трех научных направлений и возникновения новой интегральной отрасли знаний. Он с удовольствием приветствует «Нейронные сети, генетические алгоритмы и нечеткие системы» - новаторскую книгу на польском издательском рынке. Помимо обсуждения базовых элементов нейронных сетей, описания нечетких систем и эволюционно-генетических алгоритмов, этот труд содержит и оригинальные научные результаты авторов. В книге приводятся подробности реализации конкретных технических решений, в том числе различных процессоров и обучаемых систем, основанных на нечеткой логике. Большое внимание уделяется вопросам практического использования ряда пакетов прикладных программ. Тематически книга связана с научными направлениями Всепольских конференций по нейронным сетям и их приложениям, организованных профессором Л. Рутковским и Польским товариществом нейронных сетей в 1994 и 1996 гг. Данная публикация под руководством профессора Л. Рутковского чрезвычайно актуальна, ценна и уникальна. Она заполняет обширную нишу на емком научно-техническом рынке Польши. Книга окажется особенно полезной инженерам различных специальностей, экономистам, физикам, математикам и специалистам по информатике, а также студентам этих и смежных с ними областей знаний. Следует поздравить авторов с большим достижением в виде этого прекрасного научного труда. Эта книга должна не только умножить признание их заслуг, но и привлечь новые ряды энтузиастов этой захватывающей научной дисциплины. Июль 1996 г.
|