Читать в оригинале

<< ПредыдущаяОглавлениеСледующая >>


Список литературы

[1] Ackley D.H., A connectionist machine for genetic hillclimbing, Boston, MA: Kluwer Academic Publishers, 1987.

[2] Bartlett P., Downs I., Training a neural networks with a genetic algorithm, Technical Report, Dept. of Elec. Eng., Univ. of Queensland, 1990.

[3] Belew R. K., Mclnerney J., Schraudolph N. N., Evolving networks: Using genetic algorithms with connectionist learning. CSE technical report CS90-174, La Jolla, CA: University of California at San Diego,1990.

[4] Brindle M., Genetic Algorithms for Function Optimization, Ph. Dissertation, University of Alberta, 1981.

[5] Caudell T. P., Genetic algorithms as a tool for the analysis of adaptive resonance theory neural network sets, Proceedings of International Workshop on Combinations of Genetic Algorithms and Neural Networks, COGANN-92, 1992, pp. 184-200.

[6] Chalmers D. J., The evolution of learning: An experiment in genetic connectionism, in: Proceedings of the 1990 Connectionist Models Summer School, ed. Touretsky D.S., Elman J. L., Sejnowski i. J., Hinton G. E., Morgan Kauffmann, San Mateo, CA, 1990, pp. 81-90.

[7] Chong E. K. P., Zak S. H., An Introduction to Optimization, Wiley, 1996.

[8] Cytowski J., Algorytmy genetyczne. Podstawy i zastosowania, Akademicka Oficyna Wydawnicza PLJ, Warszawa 1996.

[9] Davis L., Handbook of Genetic Algorithms, Van Nostrand Reinhold, NY, 1991.

[10] Eberhart R. C., Dobbins R. W., Designing neural network explanation facilities using genetic algorithms, IEEE International Conference on Neural Networks, Singapore: IEEE, 1991, pp. 1758-1763.

[11] Eberhart R. C., The role of genetic algorithms in neural network query-based learning and explanation facilities, Proceedings of International Workshop on Combinations of Genetic Algorithms and Neural Networks, COGANN-92, 1992, pp. 169-183.

[12] Fogel D. В., Fogel L. J., Porto V. W, Evolving neural networks, Biological Cybernetics, 1990, t. 63, pp. 487-193.

[13] Fogel D. В., Evolutionary Computation. Towards a New Philosophy of Machine Intelligence, IEEE Press, 1995.

[14] Galar R., Miekka selekcja w losowej adaptaqi globalnej w . Proba bio- cybernetycznego ujecia rozwoju, Wydawnictwo Politechniki Wroclawskiej, Wroclaw 1990.

[15] Goldberg D. E., Algorytmy genetyczne i ich zastosowania, WNT, Warszawa, 1995.

[16] Gonzalez-Seco J., A genetic algorithm as the learning procedure for neural networks, IEEE International Joint Conference on Neural Networks, Baltimore, MD, IEEE, 1992, pp. 835-840.

[17] Guo Z., Uhng R. E., Use of genetic algorithms to select inputs for neural networks, in: Proceedings of International Workshop on Combinations of Genetic Algorithms and Neural Networks, COGANN-92, 1992, pp. 223-234.

[18] Gruau P., Genetic synthesis of Boolean neural networks with a cell rewriting development process, Proceedings of International Workshop on Combinations of Genetic Algorithms and Neural Networks, COGANN-92, 1992, pp. 55-74.

[19] Gwiazda Т., Algorytmy genetyczne. Wstep do teorii, Warszawa 1995.

[20] Harp S. A., Samad Т., Guha A., Towards the genetic synthesis of neural networks, in. Proceedings of the Third International Conference on Genetic Algorithms and Their Applications; Schaffer J. D. (ed.), Morgan Kauffmann, San Mateo, CA, 1989, pp. 360-369.

[21] Holland J. H., Adaptation in Natural and Artificial Systems, Ann Arbor: University of Michigan Press, 1975.

[22] Hsu L. S., Wu Z. В., Input Pattern Encoding Through Generalized Adaptive Search, Proceedings of International Workshop on Combinations of Genetic Algorithms and Neural Networks, COGANN-92, 1992, pp. 235-247.

[23] Ichar S., Weaver J., A developmental approach to neural networks design, in: Caudill M., Butler C, (ed.), IEEE, 1987, pp. 97-104.

[24] Kelly J. D., Davis L., Hybridizing the genetic algorithm and the k-nearest neighbors classification algorithm, in: Belew R. K, Booker L. B. (ed.), Fourth International Conference on Genetic Algorithms; San Mateo, CA: Morgan Kauffmann, 1991, pp. 377-383.

[25] Kitano H., Designing neural networks using genetic algorithms with graph generation system, Complex Systems, 1990, nr4, pp. 461-476.

[26] Kadaba N., Nygard K. E., Improving the performance of genetic algorithms in automated discovery of parameters, in: Porter B. W, Mooney R. J. (ed.), Proceedings of the Seventh International Conference of Machine Learning, San Mateo, CA Morgan Kauffmann, 1990, pp. 140-148.

[27] Kadaba N., Nygard K. E, Juell P. L., Integration of adaptive machine learning and knowledge-based systems for routing and scheduling applications. Expert Systems with Applications, 1991, t. 2, nr 1, pp. 15-27.

[28] Korbicz J., Obuchowicz A., Ucinski D., Sztuczne sieci neuronowe. Podstawy i zastosowania. Akademicka Oficyna Wydawnicza PLJ, Warszawa 1994.

[29] Koza J. R., Genetic Programming II. Automatic Discovery of Reusable Programs, MIT Press, 1994.

[30] Koza J. R., Rice J. P., Genetic generation of both the weights and architecture for a neural network, IEEE International Joint Conference on Neural Networks, Seattle, WA, pp. 397-404.

[31] Maren A., Harston C., Pap R., Handbook of Neural Computing Applications, Academic Press, 1990.

[32] Mexrill J. W. L., Port R.F., Fractally configured neural networks, Neural Networks, 1991, t. 4, pp. 53-60.

[33] Michalewicz Z., Genetic Algorithms + Data Structures = Evolution Programs, Springer-Verlag, 1992.

[34] Miller G. F., Todd P. M., Hagde S. U., Designing neural networks using genetic algorithms, in: Proceedings of the Third International Conference on Genetic Algorithms and Their Applications, Schaffer J. D. (ed.), Morgan Kauffmann, San Mateo, CA, 1989, pp. 379-384.

[35] Montana D. J., Davis L., Training feed forward neural networks using genetic algorithms, in: Proceedings of Eleventh International Joint Conference on Artificial Intelligence, San Mateo, CA: Morgan Kauffmann, 1989, pp. 762-767.

[36] Mulawka J., Systemy ekspertowe, WNT, Warszawa 1996.

[37] Podsiadlo M., Uwagi do twierdzenia о schematach, Materialy I Krajowej Konferencji: Algorytmy Ewolucyjne, Politechnika Warszawska, czerwiec 1996.

[38] Schaffer J. D., Caruana R. A., Eshelman L. J., Using genetic search to exploit the emergent behavior of neural networks, in: Forrest S. (ed.) Emergent Computation, Amsterdam: North Holland, 1990, pp. 244-248.

[39] Schaffer J. D., Whitley L, Eshelman J., Combinations of Genetic Algorithms and Neural Networks: A Survey of the State of the Art, Proceedings of International Workshop on Combinations of Genetic Algorithms and Neural Networks. COGANN-92, 1992.

[40] Schizas C. N., Pattichis C. S., Middleton L. Т., Neural networks, genetic algorithms and k-means algorithm: In search of data classification, in: Proceedings of International Workshop on Combinations of Genetic Algorithms and Neural Networks, COGANN-92, 1992.

[41] Shonkwiler R., Miller K. R., Genetic algorithm, neural network synergy for nonlinearly constrained optimization problems, Proceedings of International Workshop on Combinations of Genetic Algorithms and Neural Networks, COGANN-92, 1992, pp. 248-257.

[42] Suzuki K., Kakazu Y., An approach to the analysis of the basins of the associative memory model using genetic algorithms, in: Belew R. K., Booker L. В (ed.), Fourth International Conference on Genetic Algorithms, San Mateo, CA: Morgan Kaufmann, 1991, pp. 539-546.

[43] Weiss G., Neural networks and evolutionary computation part I: hybrid approaches in artificial intelligence, Proceedings of the First IEEE Conference on Evolutionary Computation, 1994, pp. 268-272.

[44] Whitley D., Applying genetic algorithms to neural network learning, Proceedings of the Seventh Conference of the Society of Artificial Intelligence and Simulation of Behavior, Sussex, England, Pitman Publishing, 1989, pp. 137-144.

[45] Whitley D., Starkweather Т., Bogart C., Genetic algorithms and neural networks: Optimizing connections and connectivity, Parallel Computing, 1990, nr 14, pp. 347-361.

[46] Wnek J., Sarma J., Wahab A. A., Michalski R. S., Comparing learning paradigms via diagrammatic visualization: A case study in single concept learning using symbolic, neural net and genetic algorithm methods, in Zemonkova M., Emrich M. L. (ed.) Methodologies for intelligent systems; 5, New York; Elsevier Science Publishing, pp. 428–437.

[47] Yao X., A review of evolutionary artificial neural networks, International Journal of Intelligent Systems, 1993, pp. 539-567.

[48] FlexTool (GA) M2.1, Flexible Intelligence Group, L.L.C, Tuscaloosa, AL 35486-1477, USA.

[49] Evolver – the Genetic Algorithm Problem Solver, Axcelis, Inc., 4668 Eastern Avenue N., Seattle, WA 98103, USA.

[50] BrainMaker, California Scientific Software, Nevada City, CA95959, USA.

[51] Genetic Training Option, California Scientific Software, Nevada City, CA 95959, USA.

 



<< ПредыдущаяОглавлениеСледующая >>