<< ПредыдущаяОглавлениеСледующая >>


6.7. История создания ЭВМ и компьютера

     Слово компьютер является производным от английских слов to compute, computer, которые переводятся как «вычислять», «вычислитель» (английское слово, в свою очередь, происходит от латинского computo – «вычисляю»). Первоначально в английском языке это слово означало человека, производящего арифметические вычисления с привлечением или без привлечения механических устройств. В дальнейшем его значение было перенесено на сами машины, однако, современные компьютеры выполняют множество задач, не связанных напрямую с математикой.

      Впервые трактовка слова компьютер появилась в 1897 году в Оксфордском английском словаре. Его составители тогда понимали компьютер как механическое вычислительное устройство. В 1946 году словарь пополнился дополнениями, позволяющими разделить понятия цифрового, аналогового и электронного компьютеров.

       Историки утверждают, что первым человеком, сформулировавшим идею о машине, которая может производить вычисления автоматически (т. е. без непосредственного участия человека благодаря заложенной программе), был Чарльз Бэббидж. Он не просто провозгласил неочевидную в то время идею автоматической вычислительной машины, но и посвятил всю свою жизнь ее разработке. Одна из его заслуг состояла в том, что он предвосхитил функциональное устройство вычислительных устройств. По замыслу Бэббиджа, его аналитическая машина имела следующие функциональные узлы:

– «Склад» для хранения чисел (по современной терминологии память);
– «Мельница» (арифметическое устройство, по современной терминологии процессор);
–Устройство, управляющее последовательностью операций в машине (Бэббидж не дал ему названия, сейчас используется термин устройство управления);
- Устройства ввода и вывода данных.

      Желание механизировать вычисления возникло у Бэббиджа в связи с недовольством, которое он испытывал, сталкиваясь с ошибками в математических таблицах, используемых в самых разных областях. В 1822 г. Бэббидж построил пробную модель вычислительного устройства, назвав ее «Разностной машиной»: работа модели основывалась на принципе, известном в математике как «метод конечных разностей»2. Данный метод позволяет вычислять значения многочленов, употребляя только операцию сложения и не выполнять умножение и деление, которые значительно труднее поддаются автоматизации. При этом предусматривалось применение десятичной системы счисления (а не двоичной, как в современных компьютерах). Однако «Разностная машина» имела довольно ограниченные возможности.
      Идеи Бэббиджа на десятилетия опередили появление пригодной для практической реализации вычислительных машин элементной базы – реально работающие конструкции появились лишь в середине XX века. Фундаментальные принципы архитектуры ЭВМ были обобщены и изложены в 1946 в классической статье А. Беркса, Г. Голдстейна и Дж. Неймана «Предварительное рассмотрение логической конструкции электронного вычислительного устройства». В ней, в частности, четко и логично обосновывалась структура ЭВМ. Все функциональные блоки ЭВМ имеют вполне естественное назначение и образуют простую и логически обоснованную структуру. Любая вычислительная машина содержит в себе следующие функциональные блоки:

- арифметико-логическое устройство (АЛУ);
- устройство управления (УУ);
- различные виды памяти;
- устройства ввода информации;
- устройства вывода информации.

      Основоположниками современной компьютерной науки по праву считаются Клод Шеннон – создатель теории информации, Алан Тьюринг – математик, разработавший теорию программ и алгоритмов, и Джон фон Нейман – автор конструкции вычислительных устройств, которая до сих пор лежит в основе большинства компьютеров.

       В 1945–1954 годах появилось первое поколение электронно-вычислительных машин (ЭВМ) – это были компьютеры на электронных лампах. Большинство машин этого поколения были экспериментальными устройствами и создавались с целью проверки тех или иных теоретических положений. Размеры и вес этих ЭВМ требовали для себя не только отдельных помещений, но и отдельных зданий.  В те же годы возникла еще одна новая наука, связанная с информатикой, – кибернетика. Основателем кибернетики является американский математик Норберт Винер.

       С 1955 по 1964 г. зародилось второе поколение компьютерной техники. Вместо электронных ламп начали использовать транзисторы, а в качестве устройств памяти стали применяться магнитные сердечники и магнитные барабаны – далекие предки современных жестких дисков. Все это позволило резко уменьшить габариты и стоимость компьютеров, которые тогда впервые стали выставляться на продажу. Но главные достижения этой эпохи принадлежат к области программного обеспечения. В этот период впервые появилось то, что сегодня называется операционной системой. Тогда же были разработаны первые языки высокого уровня – Фортран, Алгол, Кобол. Эти важные усовершенствования позволили значительно упростить и ускорить написание программ для компьютеров. Также, расширялась и сфера применения компьютеров. Теперь уже не только ученые могли рассчитывать на доступ к вычислительной технике; компьютеры нашли применение в планировании и управлении, а некоторые крупные фирмы даже компьютеризировали свою бухгалтерию.

       Изобретение интегральных схем явилось очередным толчком в развитии компьютерной техники – ее третьему поколению (1965–1974) годы. Уже в 1965 году был выпущен первый миникомпьютер PDP-8.  В эти годы впервые стали использоваться интегральные схемы – целые устройства и узлы из десятков и сотен транзисторов, выполненные на одном кристалле полупроводника (то, что сейчас называют микросхемами). В это же время появляется полупроводниковая память, которая и по всей день используется в персональных компьютерах в качестве оперативной. В эти годы производство компьютеров приобретает промышленный размах. Наиболее распространенным в те годы было семейство System/360 фирмы IBM, на основе которого в СССР была разработана серия ЕС ЭВМ. Еще в начале 60-х появляются первые миникомпьютеры – небольшие маломощные компьютеры, доступные по цене небольшим фирмам или лабораториям. Миникомпьютеры представляли собой первый шаг на пути к персональным компьютерам, пробные образцы которых были выпущены только в середине 70-х годов. Известное семейство миникомпьютеров PDP фирмы Digital Equipment послужило прототипом для советской серии машин СМ. Между тем количество элементов и соединений между ними, умещающихся в одной микросхеме, постоянно росло, и в 70-е годы интегральные схемы содержали уже тысячи транзисторов. Это позволило объединить в единственной маленькой детали большинство компонентов компьютера – что и сделала в 1971 г. фирма Intel, выпустив первый микропроцессор, который предназначался для настольных калькуляторов. Этому изобретению суждено было произвести в следующем десятилетии настоящую революцию – ведь микропроцессор является сердцем и душой современного персонального компьютера. Начиная с середины 70-х годов, все меньше становится принципиальных новаций в компьютерной науке. Прогресс идет в основном по пути развития того, что уже изобретено и придумано, – прежде всего за счет повышения мощности и миниатюризации элементной базы и самих компьютеров. С начала 80-х годов, благодаря появлению персональных компьютеров, вычислительная техника становится по-настоящему массовой и общедоступной. Складывается парадоксальная ситуация: несмотря на то, что персональные и миникомпьютеры по-прежнему во всех отношениях отстают от больших машин, львиная доля новшеств последнего десятилетия – графический пользовательский интерфейс, новые периферийные устройства, глобальные сети – обязаны своим появлением и развитием именно этой «несерьезной» технике. Большие компьютеры и суперкомпьютеры, конечно же, отнюдь не вымерли и продолжают развиваться. Но теперь они уже не доминируют на компьютерной арене, как было раньше.

      Основными требованиями к компьютерам следующего поколения являются: создание развитого человеко-машинного интерфейса (распознавание речи, образов); развитие логического программирования для создания баз знаний и систем искусственного интеллекта; создание новых технологий в производстве вычислительной техники; создание новых архитектур компьютеров и вычислительных комплексов. Новые технические возможности вычислительной техники должны были расширить круг решаемых задач и позволить перейти к задачам создания искусственного интеллекта. В качестве одной из необходимых для создания искусственного интеллекта составляющих являются базы знаний (базы данных) по различным направлениям науки и техники. Для создания и использования баз данных требуется высокое быстродействие вычислительной системы и большой объем памяти. Универсальные компьютеры способны производить высокоскоростные вычисления, но не пригодны для выполнения с высокой скоростью операций сравнения и сортировки больших объемов записей, хранящихся обычно на магнитных дисках. Для создания программ, обеспечивающих заполнение, обновление баз данных и работу с ними, были созданы специальные объектно-ориентированные и логические языки программирования, обеспечивающие наибольшие возможности по сравнению с обычными процедурными языками. Структура этих языков требует перехода от традиционной фон-неймановской архитектуры компьютера к архитектурам, учитывающим требования задач создания искусственного интеллекта.

       К классу суперкомпьютеров относят компьютеры, которые имеют максимальную на время их выпуска производительность. Первые суперкомпьютеры появились уже среди компьютеров второго поколения (1955 – 1964), они были предназначены для решения сложных задач, требовавших высокой скорости вычислений. Отличительной особенностью суперкомпьютеров являются векторные процессоры, оснащенные аппаратурой для параллельного выполнения операций с многомерными цифровыми объектами – векторами и матрицами. В них встроены векторные регистры и параллельный конвейерный механизм обработки. Если на обычном процессоре программист выполняет операции над каждым компонентом вектора по очереди, то на векторном – выдаёт сразу векторные команды. До середины 80-х годов в списке крупнейших производителей суперкомпьютеров в мире были фирмы Sperry Univac и Burroughs.   

      В наше время, время всеобщей компьютеризации, во всем мире неуклонно происходит увеличение доли людей, работающих в информационной сфере в сравнении с производственной. Автоматизация и компьютеризация информационной сферы, в общем, отстает от автоматизации производственной сферы. Теперь для человека уже недостаточно того, что ЭВМ быстро и точно решает самые сложные расчетные задачи, сегодня человеку становится необходимой помощь ЭВМ для быстрой интерпретации, семантического анализа огромного объема информации. Эти задачи мог бы решить так называемый «искусственный интеллект». Вопрос о создании искусственного интеллекта возник почти одновременно с началом компьютерной революции. Но на пути его создания встает много вопросов: принципиальная возможность создания искусственного интеллекта на основе компьютерных систем. Будет ли искусственный интеллект ЭВМ, если его удастся создать, подобен человеческому интеллекту по форме восприятия и осмысления реального мира. Многие проблемы не решены, и среди этих проблем не последнее место принадлежит проблемам, которые могла бы помочь разрешить философия.

      В последние годы компьютер и компьютерная техника стали неотъемлемой частью нашей жизни. Ни одна фирма, не представляет свою работу без компьютера и продвинутого программного обеспечения. Двадцать лет назад компьютер считался роскошью, и увидеть его можно было крайне редко. Компьютерами пользовались только огромные предприятия. Теперь же компьютер имеется в каждом доме, практически в каждой семье. Даже школьники выполняют свои домашние задания с помощью компьютера. По мнению учёных и исследователей, в ближайшем будущем персональные компьютеры кардинально изменятся, так как уже сегодня ведутся разработки новейших технологий, которые ранее никогда не применялись. Примерно в 2020–2025 годах должны появиться молекулярные компьютеры, квантовые компьютеры, биокомпьютеры и оптические компьютеры. Компьютер будущего должен облегчить и упростить жизнь человека в десятки, если не в сотни раз.

      Благодаря компьютерам и Интернет появилась виртуальная реальность, которая, пожалуй, остаётся одним из самых интересных и загадочных понятий компьютерной индустрии. Появившись ещё в прошлом веке, это понятие до сих пор притягивает к себе ученых, дизайнеров, кинорежиссёров, писателей-фантастов. Виртуальная реальность – это образ искусственного мира, моделируемый техническими средствами и передаваемый человеку через ощущения. В данный момент технологии виртуальной реальности широко применяются в различных областях человеческой деятельности: проектировании и дизайне, добыче полезных ископаемых, военных технологиях, строительстве, тренажерах и симуляторах, маркетинге и рекламе, индустрии развлечений и т. д.

      Компьютерная техника развивается с сумасшедшей скоростью и иногда очень сложно уследить или идти за ней в ногу. Можно с полной уверенностью сказать, что высокие технологии – это наше будущее и это успех всего человечества. На этом процесс развития далеко не остановлен.

 



<< ПредыдущаяОглавлениеСледующая >>