Читать в оригинале

<< ПредыдущаяОглавлениеСледующая >>


3.5. Байесовская фильтрация изображений

При всех рассмотренных ранее методах фильтрации с самого начала закладывалось отыскание фильтра в классе линейных систем. Отсюда следует, что могут существовать нелинейные процедуры, обладающие более высокими качественными характеристиками, чем рассмотренные выше. Для их отыскания необходим более общий подход к фильтрации, чем тот, который опирается на решение уравнение Винера-Хопфа. Общепринятая достаточно универсальная идеология фильтрации использует байесовский принцип. Ее применение позволяет, по крайней мере теоретически, создавать как линейные, так и нелинейные алгоритмы фильтрации. Кроме того, этот принцип помогает выяснить, при каких условиях линейные процедуры фильтрации приводят к наивысшему качеству обработки и, следовательно, являются абсолютно оптимальными.

Отметим, однако, с самого начала основные недостатки байесовской фильтрации изображений. Первый является общим для байесовских методов вообще и заключается в очень высоких требованиях к объему и характеру данных, содержащихся в математических моделях сигналов и помех, удовлетворить которым на практике удается далеко не всегда. Второй связан со спецификой изображений как двумерных сигналов, что приводит к колоссальным вычислительным трудностям при попытке прямого использования этого подхода. Последнее делает актуальной разработку таких методов, которые способны преодолеть данное ограничение. Достичь этого обычно удается ценой определенной потери качества обработки. Поэтому дело сводится к поиску таких методов, при которых потеря качества являлась бы  приемлемой.

 



<< ПредыдущаяОглавлениеСледующая >>