Читать в оригинале

<< Предыдущая Оглавление Следующая >>


3.5.3. Двухэтапная марковская фильтрация изображений

Рассмотрим подход к фильтрации изображений, основу которого составляет использование двумерных, но неполных входных данных, а также наличие у них марковских свойств. Рассмотрим получение оценки изображения в произвольной точке кадра с координатами , называя ее текущей точкой фильтрации. Осуществляя развертку изображения, можно последовательно в состояние текущей точки переводить все точки кадра, выполняя таким образом его полную  обработку.

Будем считать, что для получения оценки  в точке  привлекаются лишь данные , образованные наблюдениями -й строки  и  -го столбца, на пересечении которых в кадре расположен оцениваемый элемент. Рис. 3.8 иллюстрирует геометрию задачи.

Рис. 3.8. Геометрия использования данных при двухэтапной фильтрации

Наблюдения  образованы входными данными, лежащими на горизонтальных и вертикальных лучах  , расходящихся из текущей точки. Причем в каждый из этих векторов не входит текущее наблюдение , которое в связи с этим представлено в  отдельным элементом.

Будем, кроме того, рассматривать такие случайные поля , которые обладают свойством условной независимости. Это означает, что совместное распределение всех его элементов , расположенных на “кресте”  (рис. 3.8), можно представить в виде:

,                (3.45)

где верхние индексы также указывают на принадлежность векторов соответствующим лучам. Соотношение (3.45) означает, что значения сигнала на любой строке и на любом столбце изображения условно независимы, если известно значение сигнала  на пересечении этих строки и столбца. Если, кроме того, одномерные сигналы  и  являются марковскими последовательностями, для которых справедливо свойство условной независимости (3.42), то имеем:

.          (3.46)

Используя эту математическую модель изображения в случае независимой помехи , можно одноточечное апостериорное распределение представить в виде [3.6]:

.                 (3.47)

Соотношение (3.47) служит теоретической базой для построения оптимальных двухэтапных процедур фильтрации, использующих неполные данные исходных наблюдений. Полное АРВ, основанное на всех привлекаемых при фильтрации данных , как и в одномерном случае, представляется в виде произведения частных АРВ, каждое из которых использует локальные данные одного из лучей  и текущий элемент . Наличие в знаменателе третьей степени одноточечного АРВ служит компенсацией трехкратного “лишнего” участия текущего наблюдения в числителе. Константа  позволяет сделать АРВ нормированным.

Рассмотренный вариант обработки является разновидностью некаузальной фильтрации, поскольку в получении оценки участвуют элементы входного наблюдения, имеющие как большие, так и меньшие значения аргументов, чем у оцениваемого сигнала. Если в процессе обработки опираться только на данные двух лучей  и , то будет получен двумерный каузальный фильтр. При добавлении к ним третьего луча  реализуется полукаузальная фильтрация. Используя лучи  и , можем осуществить одномерную некаузальную фильтрацию. Коррекция, которой необходимо в этих случаях подвергнуть формулу (3.47), вполне очевидна.

Соотношение (3.47) дает возможность выполнить двумерную обработку изображения в виде некоторой совокупности одномерных процедур. Весь цикл вычислений можно представить следующим образом. Выполняется обработка всех строк изображения в прямом направлении (слева направо), в результате чего в каждой точке образуется распределение . При этом используются одномерные рекуррентные процедуры, описанные выше. Далее происходит повторное сканирование строк, но в “обратном времени” - справа налево, в процессе которого вычисляются распределения . Затем изображение аналогично дважды обрабатывается по столбцам - сверху вниз и снизу вверх, в результате чего определяются частные АРВ  и . Вычислением одноточечного АРВ  завершается первый этап обработки. На втором этапе происходит объединение всех частных АРВ в каждой точке кадра в окончательное АРВ, а также на его основе вычисляются точечные оценки изображения .

С точки зрения скорости вычислений данная технология обработки является очень привлекательной. Следует, вместе с тем, иметь в виду, что для ее реализации необходим достаточный запас оперативной памяти, чтобы хранить промежуточные результаты обработки, к числу которых относятся все частные АРВ. В этом отношении вычислительный процесс может быть существенно оптимизирован, поскольку ни одно из частных АРВ не представляет окончательной ценности. Это позволяет, например, не хранить отдельно пять различных распределений, входящих в правую часть (3.47), а по мере получения очередного сомножителя формировать произведение, именно которое и следует хранить в памяти до завершения вычислений. Очевидно, что структура вычислений, как и в одномерном случае, удобна для реализации при помощи многоканального вычислительного устройства.

Структура распределений очень сильно влияет на требуемые объем вычислений и ресурс памяти. Имеются очень “удобные” в этом смысле виды распределений. Например, если для описания изображения применима модель случайного поля с гауссовским распределением, то для представления каждого из частных и финального АРВ в (3.47) требуется наличие всего двух параметров - математического ожидания и дисперсии. Именно это и определяет конкретный характер и количество вычислений в процессе фильтрации, а также объем необходимой памяти.

Другим примером такого рода может служить математическая модель бинарного случайного поля, которое в различных точках принимает значения  или . Такое описание также является очень экономичным, поскольку АРВ содержит всего две вероятности  и , непосредственное вычисление которых и выполняется при помощи (3.47).

Существует отдельный вопрос, связанный с применимостью марковских двумерных моделей (3.45), (3.46), позволяющих  построить эффективные двухэтапные процедуры. Его изучение является достаточно непростой теоретической задачей. В частности, в работах [3.6.,3.8] установлено, что и для гауссовских, и для бинарных случайных полей необходимым и достаточным условием применимости (3.45) является возможность представления двумерных корреляционных функций этих полей в разделимом виде, т.е. в виде произведения двух множителей, один из которых описывает корреляцию изображения по строке, а второй - по столбцу. Дополнительные требования, вытекающие из (3.46), сводятся к существованию марковских свойств у одномерных последовательностей в горизонтальном и вертикальном сечениях изображения. В двух указанных примерах наличие таких свойств связано с экспоненциальным видом корреляционных функций этих одномерных сечений изображения.

На рис. 3.9 приведены результаты экспериментальной проверки двумерных двухэтапных алгоритмов фильтрации изображения. На рис. 3.9.а показано тестовое бинарное изображение “острова”, на рис. 3.9.б - изображение, искаженное белым гауссовским шумом (отношение сигнал/шум  дБ). Рис.3.9.в иллюстрирует применение простой поэлементной пороговой обработки (рис. 1.4.а), при которой порог определялся так, чтобы реализовывалась одноточечная процедура максимума апостериорной вероятности. На рис. 3.9.г, 3.9.д  и  3.9.е показаны различные результаты двухэтапной фильтрации. Первый из них соответствует одномерной каузальной фильтрации, второй - также одномерной, но некаузальной, а третий - двумерной некаузальной процедуре. Визуальное сравнение результатов говорит об очень низком качестве поэлементной обработки. При ее использовании вероятность

а)

б)

в)

г)

д)

е)

Рис. 3.9. Двухэтапная марковская фильтрация изображения

ошибки (т.е. события, состоящего в замене числа  числом  или наоборот) составила 0.23. Качество обработки улучшается при использовании фильтрации, причем оно повышается как при переходе от одномерной каузальной (при которой вероятность ошибки составляет 0.086) к одномерной некаузальной (вероятность ошибки 0.041), так и при переходе к двумерной обработке, при которой достигается вероятность ошибки равная 0.022. Таким образом, применение одномерной некаузальной фильтрации позволяет уменьшить вероятность ошибки в 5 раз по сравнению с поэлементной пороговой обработкой, а двумерной некаузальной фильтрации - почти в 10 раз. Эти примеры говорят об очень высокой эффективности, которой может достигать фильтрация, и убеждают в полезности  тех значительных усилий, которые необходимы для нахождения эффективных алгоритмов.

 



<< Предыдущая Оглавление Следующая >>