6.4. Калибровка камерыЗаметим сразу, что поскольку фокусное расстояние и масштабные коэффициенты и входят в матрицу только в комбинациях и , то раздельно оценить все три этих параметра невозможно. Введем новые параметры и , которые и будут подлежать оцениванию. Пусть камера регистрирует сцену, содержащую опорных точек, и трехмерные координаты точек известны в глобальной системе координат. Задача состоит в том, чтобы по трехмерным координатам опорных точек и координатам их проекций в плоскости изображений камеры , оценить элементы матрицы . Если положение камеры относительно этой системы известно (т.е. известны матрица и вектор в выражении (6.3)), можно сразу пересчитать координаты опорных точек в стандартную систему камеры и для оценивания внутренних параметров воспользоваться соотношениями (6.1), подставив вместо и и соответственно. Перепишем (6.1) в виде , . Для опорных точек получим две системы, состоящие из линейных уравнений каждая, относительно неизвестных , и , : , , (6.13) где , , , , , . Очевидно, достаточно двух опорных точек, чтобы получить оценки внутренних параметров камеры: , , , . Обратим внимание на необходимость выполнения условий и , которые формально выражают требование, чтобы в плоскости изображения камеры проекции опорных точек не лежали на прямых, параллельных осям координат. Для увеличения точности оценок внутренних параметров следует использовать большее количество опорных точек. Системы (6.13) в этом случае становятся переопределенными, и для их решения можно применить МНК. Минимизируя норму вектора невязки получим оценки внутренних параметров , . Рассмотрим теперь задачу калибровки в более общей постановке. Пусть неизвестны не только матрица , но и положение камеры относительно глобальной системы координат (т.е. матрица и вектор в выражении (6.3)). Такая постановка обусловлена тем, что технически довольно сложно выполнить точные измерения положения камеры и особенно ее ориентации относительно произвольной системы координат. Используя (6.2) и (6.3) и вводя вектор , связь между глобальными координатами опорной точки и координатами ее изображения можно представить в виде . (6.14) Матрица имеет размер и называется калибровочной. Обозначим , , , , (6.15) , . Отметим два важных свойства этой матрицы, которые легко получить из (6.15), учитывая (6.4) и (6.5): , . (6.16) Оказывается, что если элементы калибровочной матрицы известны, через них можно вычислить матрицы , и вектор . Действительно, учитывая (6.4), легко показать, что , , , (6.17) . Кроме того, непосредственно из (6.14) следует, что , , , , (6.18) , . Задача калибровки, следовательно, сводится к предварительному оцениванию элементов матрицы . Рассмотрим сначала линейный метод оценивания матрицы . Запишем матричное уравнение (6.14) как систему трех обычных уравнений , , , или, подставляя в два первых уравнения значение из третьего, , . Зная координаты опорных точек в трехмерном пространстве и координаты их проекций в плоскости изображения камеры, получим однородную систему из линейных уравнений относительно 12 неизвестных элементов калибровочной матрицы : . (6.19) Представим эту систему в матрично-векторном виде: , (6.20) где , . Сначала рассмотрим некоторые общие особенности этой системы. Очевидно, что одним из решений этой системы является тривиальное , которое не имеет физического смысла. Известно [6.2, с.153], что если однородная линейная система имеет хотя бы одно ненулевое решение, то она имеет бесконечное множество решений, причем, если - решение, то и , где - произвольное число, тоже является решением. Здесь необходимо различать два случая. Первый – когда ранг матрицы на единицу меньше размера вектора . Тогда существует только одно (с точностью до произвольного скалярного множителя) решение. Именно этот случай и представляет практический интерес. Для реализации этого условия необходимо (но недостаточно), чтобы количество уравнений в (6.20) было не менее 11, следовательно, количество опорных точек должно быть не менее шести. Ограничить множество решений можно, воспользовавшись первым из условий (6.16). Действительно, определив некоторое решение , в качестве оценки компонент калибровочной матрицы выберем такое, чтобы Такая нормировка определяет калибровочную матрицу с точностью до знака. Выбрать правильный знак матрицы можно, например, зная, с какой стороны от плоскости глобальной системы координат находится камера, и учитывая первое из соотношений (6.18). Знак должен совпадать со знаком компоненты вектора трансляции. Второй случай реализуется, если ранг меньше размера вектора на два и более. Здесь может существовать множество различных решений системы, среди которых осуществить правильный выбор без привлечения дополнительных данных невозможно. Показано [6.3], что такая ситуация возникает, в частности, если все опорные точки лежат в одной плоскости. Чтобы избежать этой ситуации, в качестве тестового объекта часто используют объект, приведенный на рис. 6.5. Рис.6.5. Калибровочный объект Рассмотрим теперь непосредственно метод решения системы (6.20). Обычно, чтобы уменьшить влияние ошибок измерений трехмерных координат опорных точек и координат их изображений в камере, используют больше, чем шесть опорных точек. Тогда система (6.20) становится переопределенной. Кроме того, как и в разделе 6.2, из-за ошибок в измерениях координат реально система (6.20) принимает вид , где , как и в п.6.2, - неизвестный вектор невязки, обусловленный наличием ошибок измерений. В этой ситуации можно снова воспользоваться МНК, согласно которому в качестве оценки вектора следует принять такой, который минимизирует значение функционала при условии (см.(6.16)). Поскольку функционал представляет собой квадратичную форму с неотрицательно определенной симметричной матрицей , то минимума по при условии он достигает, если - собственный вектор матрицы , соответствующий ее минимальному собственному числу [6.4, с.64]. Заметим, что . (Собственным вектором матрицы называется вектор , который удовлетворяет уравнению , где - скалярный множитель, называемый собственным числом матрицы ). Другой подход к оцениванию матрицы основан на минимизации расстояний между измеренными проекциями опорных точек и вычисленными в соответствии с (6.14). Определим величину , которая представляет сумму квадратов этих расстояний, и минимизируем ее по с учетом ограничений (6.16). Решить эту задачу можно посредством методов условной минимизации [6.5, гл.VI], изложение которых выходит за рамки данного учебника. Следует отметить только, что такой подход обычно дает результаты оценивания, более устойчивые к ошибкам измерений, чем рассмотренный выше линейный.
|