Читать в оригинале

<< ПредыдущаяОглавлениеСледующая >>


ГЛАВА 9. РАСПОЗНАВАНИЕ ОБЪЕКТОВ НА ИЗОБРАЖЕНИЯХ

9.1. Основные положения

Обнаружение и распознавание объектов составляет неотъемлемую часть человеческой деятельности. Пока еще не совсем понятно, как человеку удается так точно и так быстро выделять и узнавать нужные предметы в разнообразии окружающей среды. Попытки выяснить это делаются физиологами и психологами уже более ста лет. Однако здесь наша цель состоит не в понимании механизма восприятия человека (и животных), а в описании методов автоматизированного распознавания объектов по их изображениям: новой информационной технологии, мощной, практичной и в некотором смысле универсальной методологии обработки и оценивания информации и выявления скрытых закономерностей [9.1].

Распознавание трехмерных объектов по их двумерным изображениям стало в последнее время одной из важнейших задач анализа сцен и машинного зрения. Исходную для распознавания информацию содержат изображения в различных частях полного спектра излучений (оптические, инфракрасные, ультразвуковые и т.д.), полученные различными способами (телевизионные, фотографические, лазерные, радиолокационные, радиационные и т.д.), преобразованные в цифровую форму и представленные в виде некоторой числовой матрицы. Под объектом понимаем не только (и не столько) цифровое представление локального фрагмента двумерной сцены, а некоторое его приближенное описание, в виде набора характерных свойств (признаков). Основное назначение описаний (образов объектов)- это их использование в процессе установления соответствия объектов, осуществляемого путем сравнения (сопоставления). Задачей распознавания является определение «скрытой» принадлежности объекта к тому или иному классу путем анализа вектора значений наблюдаемых признаков. Информацию о связи между значениями признаков объекта и его принадлежностью к определенному классу алгоритм распознавания должен извлечь из обучающей совокупности объектов, для которых известны либо значения и признаков и классов, либо только значения их признаков. В первом случае задача называется задачей обучения распознаванию образов с учителем, а во втором — без учителя. Здесь предполагается что каждый объект «принадлежит» одному образу из некоторого фиксированного множества. При отнесении (классификации) объектов требуется применить некоторое установленное ранее правило, чтобы решить, какому образу (классу) принадлежит объект. В задаче распознавания с обучением правило классификации должно вырабатываться на основе исследования множества объектов с известной принадлежностью различным классам. Эти объекты в совокупности называются обучающим множеством или выборкой. В задаче автоматического формирования образов объекты предъявляются «наблюдателю» без указания их принадлежности классам (распознавание без учителя). Наблюдатель (алгоритм распознавания) должен самостоятельно построить соответствующее определение классов (кластерный анализ). Разумеется, такой подход к анализу изображений адекватен лишь одному из двух аспектов двуединой задачи обнаружения и распознавания объектов сцены, а именно, собственно распознаванию класса вполне определенного (выделенного) фрагмента изображения, рассматриваемого как внешнее проявление некоторого скрытого образа. При этом вынужденно предполагается уже решенной задача сегментации, т. е. определение границ фрагментов, каждый из которых допустимо рассматривать как единое целое (объект).

Исследования по распознаванию образов пространственных объектов отличаются большим разнообразием в постановке задач и выборе средств их решения (методов обработки соответствующих фрагментов изображений), что является следствием разнообразия областей практического применения. Традиционными задачами, решавшимися еще в первых опытных разработках систем машинного зрения, служат задачи обнаружения и распознавания объектов, имеющих заданную форму на основе зашумленных и (возможно) деформированных изображений. Так, одной из первых практических задач, стимулировавших становление и развитие теории распознавания объектов, была задача идентификации и распознавания человеческих лиц

Рис. 9.1. Иллюстрация проблемы распознавания человеческих лиц и подходов к выбору информативных фрагментов (источник [9.15])

Сложность этой задачи обусловлена многообразием возможных ракурсов (масштабов, положений, углов поворота) распознаваемых лиц (см. рис. 9.1). Здесь предварительно необходимо построить внутреннее представление объектов, включающее проекции изображений [9.2, 9.15]. Данная задача до сих пор имеет широкое применение в системах охраны, при верификации кредитных карточек, в криминалистической экспертизе, на  телеконференциях и т.д. Для ее решения предложены методы распознавания, основанные на теории нейрокомпыотерных сетей, корреляционно-экстремальных алгоритмах, методах вычисления статистических и алгебраических моментов, контурном анализе, 3D-моделировании и др. [9.2, 9.3]. Среди них особое внимание уделяется направлению, связанному с автоматическим выделением характерных (информативных) признаков объектов сцены, в данном случае элементов глаз, носа, рта, подбородка – рис. 9.1.

Немного позже, в задачах мониторинга (контроля) природной среды по аэрокосмическим изображениям наметилось еще несколько важных подходов к построению информативных признаков. В частности, когда были получены первые многозональные и спектрозональные данные дистанционного зондирования, большинство разработчиков машинных методов интерпретации обратились к изучению спектральных свойств природных объектов, поскольку яркости соответствующих им элементов изображений в различных спектральных диапазонах позволяли идентифицировать их при относительно низких вычислительных затратах [9.4].

Рис. 9.2. Кластер-анализ спектральной яркости природных объектов, отображенный и двумерную плоскость пары информативных спектральных каналов

Наиболее употребительным методом обработки была «классификация без учителя» на основе кластерного анализа, с помощью которого пространство спектральных признаков разбивалось на различимые группы (кластеры, см. рис. 9.2), а классификация элементов изображений позволяла одновременно сегментировать сцену на спектрально однородные области [9.5, 9.6].

Кроме того, выяснилось, что при распознавании природных образований помимо спектрозональных признаков оказались чрезвычайно важными также признаки, характеризующие локальную пространственную организацию полутонов (текстуру) объектов анализа. Опытный оператор-дешифровщик полагается на такую информацию (форму, ориентацию, распределение характерных элементов, контекст и другие пространственные характеристики) иногда в большей степени, чем на спектрозональные признаки [9.4]. В любом случае привлечение текстурных признаков позволяет существенно повысить надежность распознавания и увеличить количество различимых классов природных объектов.

В экспериментальных исследованиях, ориентированных на решение конкретных задач, исходными данными является некоторое множество фрагментов изображений (объектов сцены), дешифрированное специалистами-предметниками и служащее обучающим и контрольным материалом. Здесь первичная цель разработки алгоритма распознавания заключается в получении ответа на вопрос, возможен ли автоматизированный анализ и классификация соответствующих изображений объектов и, если да, то какой набор дешифровочных признаков наиболее эффективен и какую структуру должны иметь решающее правило и метод дешифрирования.

 



<< ПредыдущаяОглавлениеСледующая >>