1.5.3. Оценка устойчивостиПри проверке адекватности модели как существующей, так и проектируемой системы реально может быть использовано лишь ограниченное подмножество всех возможных значений входных параметров (рабочей нагрузки и внешней среды). В связи с этим для обоснования достоверности получаемых результатов моделирования большое значение имеет проверка устойчивости модели [10]. В теории моделирования это понятие трактуется следующим образом. Устойчивость модели - это ее способность сохранять адекватность при исследовании эффективности системы на всем возможном диапазоне рабочей нагрузки, а также при внесении изменений в конфигурацию системы. Каким образом может быть оценена устойчивость модели? Универсальной процедуры проверки устойчивости модели не существует. Разработчик вынужден прибегать к методам «для данного случая», частичным тестам и здравому смыслу. Часто полезна апостериорная проверка. Она состоит в сравнении результатов моделирования и результатов измерений на системе после внесения в нее изменений. Если результаты моделирования приемлемы, уверенность в устойчивости модели возрастает. В общем случае можно утверждать, что чем ближе структура модели структуре системы и чем выше степень детализации, тем устойчивее модель. Устойчивость результатов моделирования может быть также оценена методами математической статистики. Здесь уместно вспомнить основную задачу математической статистики, которая заключается в том, чтобы проверить гипотезу относительно свойств некоторого множества элементов, называемого генеральной совокупностью, оценивая свойства какого-либо подмножества генеральной совокупности (то есть выборки). В генеральной совокупности исследователя обычно интересует некоторый признак, который обусловлен случайностью и может иметь качественный или количественный характер. В данном случае именно устойчивость результатов моделирования можно рассматривать как признак, подлежащий оценке. Для проверки гипотезы об устойчивости результатов может быть использован критерий Уилкоксона, который служит для проверки того, относятся ли две выборки к одной и той же генеральной совокупности (т. е. обладают ли они одним и тем же статистическим признаком) [7, 39]. Например, в двух партиях некоторой продукции измеряется определенный признак и требуется проверить гипотезу о том, что этот признак имеет в обеих партиях одинаковое распределение; другими словами, необходимо убедиться, что технологический процесс от партии к партии изменяется несущественно. При статистической оценке устойчивости модели соответствующая гипотеза может быть сформулирована следующим образом: при изменении входной (рабочей) нагрузки или структуры ММ закон распределения результатов моделирования остается неизменным.
|