2.5. Заключительные замечанияСуществует довольно большое количество методов моделирования СВ [1, 3, 4, 13, 28]. В данном разделе были изложены некоторые из них. При этом преследовалась цель привести примеры алгоритмов для моделирования СВ с распространенными законами распределения. Рассмотрим краткую сравнительную характеристику различных методов моделирования СВ и некоторые рекомендации для выбора того или иного подхода для решения конкретных задач. В тех случаях, когда требуется высокая точность воспроизведения законов распределения СВ, целесообразно использовать методы моделирования, не обладающие методической погрешностью. К ним относятся описанные в пп. 2.2, 2.3 алгоритмы получения СВ (2.5), (2.6), (2.15), (2.16). Погрешностью таких алгоритмов часто можно пренебречь, так как она определяется лишь погрешностью выполнения на ЭВМ необходимых нелинейных преобразований и отклонением закона распределения исходных случайных чисел от равномерного. Примером систем, при моделировании которых может потребоваться высокая точность воспроизведения законов распределения СВ, являются системы приёма цифровых радиосигналов с низкой вероятностью ошибки (порядка 10–4. . . 10–6). Другим достоинством указанных алгоритмов является простота подготовительной работы, так как преобразования равномерного закона в требуемый закон распределения даются в виде готовых аналитических зависимостей. Такие алгоритмы, кроме того, позволяют легко изменять форму закона распределения в процессе моделирования СВ. Например, изменение ПРВ семейства Райса, сводится к изменению по соответствующему закону только параметров и в алгоритме (2.16). Основным недостатком этих алгоритмов является сравнительно низкое быстродействие, так как выполнение на ЭВМ нелинейных преобразований часто требует довольно большого количества элементарных операций. B задачах, не предъявляющих высоких требований к качеству СВ, для сокращения количества элементарных операций рекомендуется использовать более экономичные приближённые методы (п. 2.3).
|