<< ПредыдущаяОглавлениеСледующая >>


1.1.4. Имитационное моделирование

При имитационном моделировании реализующий модель алгоритм воспроизводит процесс функционирования системы во времени. Имитируются элементарные явления, составляющие процесс, с сохранением их логической структуры и последовательности протекания во времени [42].

Основным преимуществом имитационных моделей по сравнению с аналитическими является возможность решения более сложных задач. Имитационные модели позволяют легко учитывать наличие дискретных или непрерывных элементов, нелинейные характеристики, случайные воздействия и др.  Поэтому этот метод широко применяется на этапе проектирования сложных систем. Основным средством реализации имитационного моделирования служит ЭВМ, позволяющая осуществлять цифровое моделирование систем и сигналов.

В связи с этим определим словосочетание «компьютерное моделирование», которое все чаще используется в литературе. Будем полагать, что компьютерное моделирование - это математическое моделирование с использованием средств вычислительной техники. Соответственно, технология компьютерного моделирования предполагает выполнение следующих действий [10]:

1) определение цели моделирования;

2) разработка концептуальной модели;

3) формализация модели;

4) программная реализация модели;

5) планирование модельных экспериментов;

6) реализация плана эксперимента;

7) анализ и интерпретация результатов моделирования.

Содержание первых двух этапов практически не зависит от математического метода, положенного в основу моделирования (и даже наоборот - их результат определяет выбор метода). А вот реализация остальных пяти этапов существенно различается для аналитического и имитационного моделирования.

При имитационном моделировании используемая ММ воспроизводит алгоритм («логику») функционирования исследуемой системы во времени при различных сочетаниях значений параметров системы и внешней среды. Примером простейшей аналитической модели может служить уравнение прямолинейного равномерного движения. При исследовании такого процесса с помощью имитационной модели должно быть реализовано наблюдение за изменением пройденного пути с течением времени.

Очевидно, в одних случаях более предпочтительным является аналитическое моделирование, в других - имитационное (или сочетание того и другого). Чтобы выбор был удачным, необходимо ответить на два вопроса.

С какой целью проводится моделирование?

К какому классу может быть отнесено моделируемое явление?

Ответы на оба эти вопроса могут быть получены в ходе выполнения двух первых этапов моделирования.

Имитационные модели не только по свойствам, но и по структуре соответствуют моделируемому объекту. При этом имеется однозначное и явное соответствие между процессами, получаемыми на модели, и процессами, протекающими на объекте. Недостатком имитационного моделирования является большое время решения задачи для получения хорошей точности.

Результаты имитационного моделирования работы стохастической системы являются реализациями случайных величин или процессов. Поэтому для нахождения характеристик системы требуется многократное повторение и последующая обработка данных. Чаще всего в этом случае применяется разновидность имитационного моделирования - статистическое моделирование (или метод Монте-Карло), т.е. воспроизведение в моделях случайных факторов, событий, величин, процессов, полей [13, 30, 41]. По результатам статистического моделирования определяют оценки вероятностных критериев качества, общих и частных, характеризующих функционирование и эффективность управляемой системы. Статистическое моделирование широко применяется для решения научных и прикладных задач в различных областях науки и техники. Методы статистического моделирования широко применяются при исследовании сложных динамических систем, оценке их функционирования и эффективности.

Заключительный этап статистического моделирования основан на математической обработке полученных результатов. Здесь используют методы математической статистики (параметрическое и непараметрическое оценивание, проверку гипотез) [39]. Примером параметрической оценки является выборочное среднее показателя эффективности.  Среди непараметрических методов большое распространение получил метод гистограмм.

Рассмотренная схема основана на многократных статистических испытаниях системы и методах статистики независимых случайных величин. Эта схема является далеко не всегда естественной на практике и оптимальной по затратам. Сокращение времени испытания систем может быть достигнуто за счет использования более точных методов оценивания. Как известно из математической статистики, наибольшую точность при заданном объеме выборки имеют эффективные оценки [5, 38]. Оптимальная фильтрация и метод максимального правдоподобия дают общий метод получения таких оценок [38].

В задачах статистического моделирования обработка реализаций случайных процессов необходима не только для анализа выходных процессов. Весьма важен также и контроль характеристик входных случайных воздействий. Контроль заключается в проверке соответствия распределений генерируемых процессов заданным распределениям. Эта задача часто формулируется как задача проверки гипотез [5].

Общей тенденцией моделирования с использованием ЭВМ у сложных управляемых систем является стремление к уменьшению  времени моделирования, а также проведение исследований в реальном  масштабе  времени. Вычислительные алгоритмы удобно представлять в рекуррентной форме, допускающей их реализацию в темпе поступления текущей информации [4, 28, 29].

 



<< ПредыдущаяОглавлениеСледующая >>