<< ПредыдущаяОглавлениеСледующая >>


1.5. Основные этапы математического моделирования

Первым этапом математического моделирования является постановка задачи, определение объекта и целей исследования, задание критериев (признаков) изучения объектов и управления ими. Неправильная или неполная постановка задачи может свести на нет результаты всех последующих этапов.

Вторым этапом моделирования является выбор типа математической модели, что является важнейшим моментом, определяющим направление всего исследования. Обычно последовательно строится несколько моделей. Сравнение результатов их исследования с реальностью позволяет установить наилучшую из них. На этапе выбора типа математической модели при помощи анализа данных поискового эксперимента устанавливаются: линейность или нелинейность, динамичность или статичность, стационарность или нестационарность, а также степень детерминированности исследуемого объекта или процесса.

Процесс выбора математической модели объекта заканчивается ее предварительным контролем, который также является первым шагом на пути к исследованию модели. При этом осуществляются следующие виды контроля (проверки): размерностей; порядков; характера зависимостей; экстремальных ситуаций; граничных условий; математической замкнутости; физического смысла; устойчивости модели [26].

Контроль размерностей сводится к проверке выполнения правила, согласно которому приравниваться и складываться могут только величины одинаковой размерности.

Контроль порядков величин направлен на упрощение модели. При этом определяются порядки складываемых величин и явно малозначительные слагаемые отбрасываются.

Анализ характера зависимостей сводится к проверке направления и скорости изменения одних величин при изменении других. Направления и скорость, вытекающие из ММ, должны соответствовать физическому смыслу задачи.

Анализ экстремальных ситуаций сводится к проверке наглядного смысла решения при приближении параметров модели к нулю или бесконечности.

Контроль граничных условий состоит в том, что проверяется соответствие ММ граничным условиям, вытекающим из смысла задачи. При этом проверяется, действительно ли граничные условия поставлены и учтены при построении искомой функции и что эта функция на самом деле удовлетворяет таким условиям.

Анализ математической замкнутости сводится к проверке того, что ММ дает однозначное решение.

Анализ  физического смысла сводится к проверке физического содержания промежуточных соотношений, используемых при построении ММ.

Проверка устойчивости модели состоит в проверке того, что варьирование исходных данных в рамках имеющихся данных о реальном объекте не приведет к существенному изменению решения.

 



<< ПредыдущаяОглавлениеСледующая >>