Читать в оригинале

<< ПредыдущаяОглавлениеСледующая >>


4.2. Интеграционное тестирование

Интеграционное тестирование - это тестирование части системы, состоящей из двух и более модулей. Основная задача интеграционного тестирования - поиск дефектов, связанных с ошибками в реализации и интерпретации интерфейсного взаимодействия между модулями.

С технологической точки зрения интеграционное тестирование является количественным развитием модульного, поскольку так же, как и модульное тестирование, оперирует интерфейсами модулей и подсистем и требует создания тестового окружения, включая заглушки (Stub) на месте отсутствующих модулей. Основная разница между модульным и интеграционным тестированием состоит в целях, то есть в типах обнаруживаемых дефектов, которые, в свою очередь, определяют стратегию выбора входных данных и методов анализа. В частности, на уровне интеграционного тестирования часто применяются ме тоды, связанные с покрытием интерфейсов, например, вызовы функций или методов, или анализ использования интерфейсных объектов таких, как глобальные ресурсы, средства коммуникаций, предоставляемые операционной системой.

На Рис. 15 приведена структура комплекса программ K, состоящего из оттестированных на этапе модульного тестирования модулей M1, M2, M11, M12, M21, M22. Задача, решаемая методом интеграционного тестирования, - тестирование межмодульных связей, реализующихся при исполнении программного обеспечения комплекса K.

Рис. 15. Пример структуры комплекса программ

Интеграционное тестирование использует модель «белого ящика» на модульном уровне. Поскольку тестировщику текст программы известен с детальностью до вызова всех модулей, входящих в тестируемый комплекс, применение структурных критериев на данном этапе возможно и оправдано.

Интеграционное тестирование применяется на этапе сборки модульно оттестированных модулей в единый комплекс. Известны два метода сборки модулей:

Монолитный, характеризующийся одновременным объединением всех модулей в тестируемый комплекс;

Инкрементальный, характеризующийся пошаговым (помодульным) наращиванием комплекса программ с пошаговым тестированием собираемого комплекса.

В инкрементальном методе выделяют две стратегии добавления модулей:

1) «Сверху вниз» и соответствующее ему восходящее тестирование.

2) «Снизу вверх» и соответственно нисходящее тестирование.

Особенности монолитного тестирования заключаются в следующем: для замены неразработанных к моменту тестирования модулей, кроме самого верхнего (модуль К на Рис. 15), необходимо дополнительно разрабатывать драйверы (test driver) и/или заглушки (stub), замещающие отсутствующие на момент сеанса тестирования модули нижних уровней.

Сравнение монолитного и интегрального подхода дает следующее.

1. Монолитное тестирование требует больших трудозатрат, связанных с дополнительной разработкой драйверов и заглушек и со сложностью идентификации ошибок, проявляющихся в пространстве собранного кода.

2. Пошаговое тестирование связано с меньшей трудоемкостью идентификации ошибок за счет постепенного наращивания объема тестируемого кода и соответственно локализации добавленной области тестируемого кода.

Особенности нисходящего тестирования заключаются в следующем: организация среды для исполняемой очередности вызовов оттестированными модулями тестируемых модулей, постоянная разработка и использование заглушек, организация приоритетного тестирования модулей, содержащих операции обмена с окружением, или модулей, критичных для тестируемого алгоритма.

Например, порядок тестирования комплекса K (Рис. 15) при нисходящем тестировании может быть таким, как показано ниже, где тестовый набор, разработанный для модуля Mi, обозначен как XYi = (X, Y)i.

K->XYk
M1->XY1
M11->XY11
M2->XY2
M22->XY22
M21->XY21
M12->XY12

К недостаткам нисходящего тестирования следует отнести:

- проблему разработки достаточно «интеллектуальных» заглушек, т.е. заглушек, способных к использованию при моделировании различных режимов работы комплекса, необходимых для тестирования;

- сложность организации и разработки среды для реализации исполнения модулей в нужной последовательности;

- не всегда эффективную реализацию модулей из-за подстройки (специализации) еще не тестированных модулей нижних уровней к уже оттестированным модулям верхних уровней при параллельной разработке модулей верхних и нижних уровней.

Особенности восходящего тестирования заключаются в организации порядка сборки и перехода к тестированию модулей, соответствующему порядку их реализации.

Например, порядок тестирования комплекса K (Рис. 15) при нисходящем тестировании может быть следующим:

M11->XY11
M12->XY12
M1->XY1
M21->XY21
M2(M21, Stub(M22))->XY2
K(M1, M2(M21, Stub(M22)) ->XYk
M22->XY22
M2->XY2
K->XYk

А к недостаткам восходящего тестирования можно отнести:

- запаздывание проверки концептуальных особенностей тестируемого комплекса;

- необходимость в разработке и использовании драйверов.

 



<< ПредыдущаяОглавлениеСледующая >>