§ 125. Искусственные спутники ЗемлиНа тело, выведенное за пределы земной атмосферы, действуют, как и на всякое небесное тело, только силы тяготения со стороны Земли, Солнца и других небесных тел. В зависимости от начальной скорости, сообщенной телу при его взлете с поверхности Земли, дальнейшая судьба тела может быть различной: при малой начальной скорости тело падает обратно на Землю; при большей скорости тело может превратиться в искусственный спутник и начать вращаться вокруг Земли, подобно ее естественному спутнику — Луне; при еще большей скорости тело может уйти от Земли так далеко, что сила земного притяжения практически не будет влиять на его движение и оно обратится в искусственную планету, т. е. начнет вращаться вокруг Солнца; наконец, при еще большей скорости тело может навсегда уйти из Солнечной системы в мировое пространство. Мы рассмотрим только случай, когда тело превращается в искусственный спутник Земли. Изучая его движение относительно Земли, будем учитывать только силу притяжения его Землей. Мы увидим, что тело может стать спутником Земли только в том случае, если его скорость лежит в сравнительно узких пределах: от 7,91 до 11,19 км/с. При скорости, меньшей 7,91 км/с, тело упадет обратно на Землю; при скорости, большей 11,19 км/с, тело уйдет от Земли безвозвратно. Для запуска искусственных спутников применяют специальные ракеты, поднимающие спутник на заданную высоту и разгоняющие его до требуемой скорости; после этого спутник отделяется от ракеты-носителя и продолжает свое движение под действием только сил тяготения. Двигатели ракет должны, совершить работу против сил тяжести и против сил сопротивления воздуха, а также сообщить спутнику большую скорость. Для этого двигатели ракеты должны развивать огромную мощность (миллионы киловатт). Если расстояние от спутника до поверхности Земли меняется незначительно по сравнению с расстоянием до центра Земли, то силу притяжения спутника Землей можно (для грубых расчетов) считать постоянной по модулю, как это мы делали в § 113 при изучении полета тела, брошенного под углом к горизонту. Но направление силы тяжести уже нельзя будет считать постоянным, как для коротких траекторий пуль и снарядов; теперь мы должны учитывать, что сила тяжести направлена в любой точке по радиусу к центру Земли. Мы рассмотрим только движение искусственных спутников по круговым орбитам. Сила притяжения Земли создает центростремительное ускорение спутника, равное
Подставив
Эту скорость называют первой космической скоростью. Двигаясь с такой скоростью, спутник облетал бы Землю за Спутник, вращающийся вокруг Земли вблизи земной поверхности, имеет ускорение Рис. 203. Рисунок из трудов Ньютона: траектории тела, бросаемого с вершины высокой горы с различными горизонтальными скоростями. Еще Ньютон понимал, что для запуска тела на орбиту вокруг Земли тело должно иметь достаточно большую скорость. Из формулы (125.1) ясно, что если скорость тела будет меньше первой космической, то сила тяжести заставит его двигаться по траектории с радиусом кривизны, меньшим радиуса Земли В действительности спутник не может быть запущен по орбите радиуса
откуда
Таким образом, по мере увеличения радиуса орбиты скорость искусственного спутника уменьшается. Это не означает, однако, что для запуска спутника на орбиту большего радиуса двигатели ракеты должны совершить меньшую работу. Уменьшается только доля работы, необходимая для сообщения спутнику кинетической энергии. Но при этом спутник надо поднять на большую высоту над Землей; значит, потребуется совершить большую работу против силы земного притяжения, т. е. сообщить спутнику большую потенциальную энергию. В итоге оказывается, что по мере увеличения радиуса орбиты суммарная работа, необходимая для запуска спутника, растет. В самом деле, рассчитаем, как меняется в зависимости от радиуса орбиты работа, необходимая на подъем спутника с земной поверхности до орбиты и на сообщение ему скорости, необходимой для движения по орбите. Согласно формуле (125.3) кинетическая энергия спутника массы
где
Рассмотрим полет спутника массы
где
В соответствии с тем, что при переходе с первой орбиты на вторую скорость спутника уменьшается, С другой стороны, работа против силы тяжести при переходе с первой орбиты на вторую равна силе тяжести, действующей на спутник, умноженной на
Эта работа затрачивается на приращение потенциальной энергии спутника при переходе с первой орбиты на вторую. Таким образом,
Сравнение выражений (125.5) и (125.6) показывает, что приращение потенциальной энергии в два раза превышает убыль кинетической энергии спутника:
Представим переход спутника с орбиты радиуса (см. формулу (125.4)). Полученное равенство будет выполняться, если положить
где Проще всего считать константу
В этом случае
Мы получили выражение (125.8) для спутника, движущегося по орбите радиуса Если принять
Пусть
Мы пришли к известному выражению для потенциальной энергии тела, поднятого над Землей на высоту Напомним, что потенциальная энергия определяет работу, которая совершается силами тяготения над телом при переходе его из положения с энергией С помощью выражений для кинетической и потенциальной энергий можно определить работу, которую нужно совершить, чтобы вывести спутник массы
Это выражение не учитывает работу, которую нужно совершить при запуске спутника против сил сопротивления атмосферы. Из (125.12) видно, что с увеличением радиуса орбиты Положив в формуле (125.12)
Эта работа идет на приращение потенциальной энергии тела. Действительно, согласно (125.11) приращение
Работа (125.13) совершается за счет запаса кинетической энергии, которая сообщается спутнику при запуске. Минимальная скорость
откуда
Эту скорость называют второй космической скоростью. Сравнение с (125.2) показывает, что вторая космическая скорость в
При запуске тела со скоростью, большей второй космической скорости, оно также не возвратится на Землю, но в этом случае по мере удаления тела от Земли его скорость не будет стремиться к нулю. 125.1. С какой скоростью нужно подбросить тело вертикально вверх, чтобы оно достигло высоты над поверхностью Земли, равной радиусу Земли? При расчете пренебречь сопротивлением воздуха, но учесть изменение силы тяжести. 125.2. На каком расстоянии от центра Земли период обращения искусственного спутника будет равен 24 часам, так что спутник сможет занимать относительно вращающейся Земли неизменное положение («синхронные спутники»)?
|