Читать в оригинале

<< ПредыдущаяОглавлениеСледующая >>


§ 29. Кинематика космических движений.

Мы видели, что для описания движения точки необходимо измерять длину пути, пройденного точкой по ее траектории, и «привязывать» каждое положение точки по траектории к соответственному моменту времени. При изучении движения космического корабля и вообще космических тел — планет, Луны, звезд — не может быть, конечно, речи о непосредственной разметке траектории. Единственный способ измерения расстояния до космического корабля (и вообще определения его положения) — это передача сигналов, которые могут распространяться в космическом пространстве, т. е. световых сигналов и радиосигналов. Например, можно наблюдать космический корабль или планету в телескоп, или производить радиолокационные наблюдения планет, или принимать сигналы, передаваемые космическим кораблем.

Собственно говоря, в этом нет ничего принципиально нового по сравнению с наблюдением движений предметов на Земле. На Земле мы также пользуемся световыми сигналами (наблюдение движущегося тела простым глазом, фотографирование) и радиосигналами (радиолокация.) Но между наблюдениями в пределах земных расстояний и наблюдениями на огромных дистанциях в космосе есть важная количественная разница. В самом деле, так как каждый сигнал требует определенного времени для своего распространения от движущегося тела к наблюдателю, то в тот момент, когда мы производим наблюдение движущегося тела, оно оказывается уже в другом месте: наблюдение события запаздывает по отношению к моменту, когда событие произошло, на время пробега сигнала от движущегося тела к наблюдателю.

Правда, скорость света и радиосигналов настолько велика, что это смещение тела за время запаздывания прихода сигнала будет мало по сравнению с расстоянием до тела. Например, если бы можно было видеть пулю, летящую со скоростью 800 м/с на расстоянии 1 км, то, не учитывая того, что свет, приходящий от пули, запоздает, мы ошиблись бы в определении положения пули примерно на 3 мм. Но в космическом пространстве тела могут удаляться на очень большие расстояния, и поэтому погрешность может сильно возрасти. Например, для космического корабля, удаляющегося от Земли с той же скоростью 800 м/с и достигшего орбиты Юпитера (при наибольшем сближении Земли и Юпитера), погрешность, вызванная неучетом времени пробега светового или радиосигнала, достигнет уже 1700 км!

Таким образом, при больших расстояниях пренебрегать временем пробега сигнала уже нельзя; например, если нужно передать на космический корабль какую-либо команду (скажем, включить двигатели) в тот момент, когда корабль занимает определенное положение относительно небесных тел, то команда должна быть послана с упреждением, равным времени запаздывания сигнала. Кроме того, конечно, должно быть учтено такое же время запаздывания и при определении самого положения космического корабля. Для приведенного примера с кораблем, достигающим орбиты Юпитера, запаздывание сигнала и требуемое упреждение должны были бы равняться 2100 с. Ясно, что запаздывание будет тем больше, чем дальше от Земли находится космический корабль; так, при достижении орбиты Плутона требуемое упреждение составило бы уже 20 000 с, а погрешность в определяемом положении при неучете запаздывания сигнала достигла бы 16 000 км.

На Земле измерение времени запаздывания радиосигнала при прохождении большого расстояния используют при радиолокации. Радиолокатор посылает мощный радиосигнал в направлении, где ожидается появление цели. Целью может быть самолет, ракета, дождевая туча, след метеора в атмосфере — вообще всякое тело, способное отражать радиосигнал. Отраженный от тела сигнал улавливается приемником радиолокатора; специальное устройство измеряет время, протекшее между посылкой сигнала и его приемом. Так как сигналу пришлось пройти расстояние от локатора до цели дважды, то, очевидно, расстояние до цели равно половине измеренного промежутка времени между посылкой сигнала и его приемом, умноженной на скорость радиосигнала. Момент локации, т. е. момент отражения сигнала от цели,— это полусумма моментов посылки и приема сигналов.

К моменту приема сигнала локатором цель успеет сдвинуться (от момента попадания сигнала на цель) на расстояние, равное дистанции до цели, умноженной на отношение скорости цели к скорости радиосигнала. Например, при локации с расстояния 1000 км самолета, летящего со скоростью 2000 км/ч, самолет сдвинется примерно на 2 м.

Впервые скорость света была измерена в космосе; при этом было использовано описанное выше явление запаздывания светового сигнала, приходящего с большого расстояния, относительно момента выхода сигнала. В конце XVII века датский ученый Олаф Рёмер, наблюдая затмение спутника планеты Юпитер, попадающего при каждом обращении вокруг планеты в ее тень, заметил, что в то время, когда Земля в своем годовом движении вокруг Солнца приближается к Юпитеру, промежутки времени между затмениями уменьшаются по сравнению с временем, когда Земля удаляется от Юпитера. Он объяснил это различие тем, что при приближении Земли к Юпитеру запаздывание, с которым мы наблюдаем события, происходящие вблизи Юпитера (затмения спутника), уменьшается, а при удалении — увеличивается. Суммарное различие в запаздывании должно равняться времени, которое свет затрачивает на прохождение диаметра земной орбиты. Скорость света равняется, таким образом, диаметру земной орбиты, разделенному на наибольшее различие в запаздывании наблюдения затмений. Подробнее метод Рёмера описан в томе III.

Из сказанного следует, что при «привязке» наблюдаемых положений космического корабля (или другого небесного тела) к соответственным моментам времени следует относить к наблюдаемому (например, в телескоп) положению не момент наблюдения, а более ранний — с учетом запаздывания сигнала. Отсюда ясно, какую важную роль играет скорость распространения света или радиоволн при изучении движений космических объектов: космических кораблей, планет, комет, звезд и т. д. Чем дальше объект, тем важнее учет времени распространения света. Мы видим дальние звезды не в том положении, в котором они находятся сегодня, а в том, в котором они находились годы, тысячи и миллионы лет тому назад. С другой стороны, для «земных» движений запаздывание мало: даже на пробег вокруг земного шара по экватору свет потратил бы только 0,13 с.

Есть и на Земле такие движения, для которых нужно учитывать время пробега света при «привязке» положений тела к моментам времени: это — движения, по скорости сравнимые со световым сигналом. Элементарные частицы могут обладать скоростями, весьма близкими к скорости света. Для определения положения таких частиц учет времени пробега светового сигнала, конечно, необходим, так как они даже за малое время успевают сместиться очень сильно. Обычные же тела — самолеты, ракеты, снаряды, если говорить о самых быстрых больших телах,— движутся настолько медленно по сравнению со световым сигналом, что для них поправка остается малой, пока расстояния малы.

 



<< ПредыдущаяОглавлениеСледующая >>