Читать в оригинале

<< Предыдущая Оглавление Следующая >>


Глава IX. ПРОХОЖДЕНИЕ ЭЛЕКТРИЧЕСКОГО ТОКА ЧЕРЕЗ ПОЛУПРОВОДНИКИ

§ 108. Природа электрического тока в полупроводниках.

В § 2 мы говорили уже о том, что подавляющее большинство веществ не принадлежит ни к числу таких хороших диэлектриков, как янтарь, кварц или фарфор, ни к числу таких хороших проводников тока, как металлы, а занимает промежуточное положение между теми и другими. Их называют полупроводниками. Удельные проводимости различных тел могут иметь очень сильно отличающиеся значения. Хорошие диэлектрики имеют ничтожную проводимость: от  до  См/м; проводимость металлов, наоборот, очень велика: от  до  См/м (табл. 2). Полупроводники по своей проводимости лежат в интервале между этими крайними пределами.

Особый научный и технический интерес представляют так называемые электронные полупроводники. Как и в металлах, прохождение электрического тока через такие полупроводники не вызывает никаких химических изменений в них; следовательно, мы должны сделать вывод, что и в них свободными носителями заряда являются электроны, а не ионы. Иными словами, проводимость этих полупроводников, как и металлов, является электронной. Однако уже огромное количественное различие между удельными проводимостями указывает на то, что существуют весьма глубокие качественные различия в условиях прохождения электрического тока через металлы и через полупроводники. Ряд других особенностей в электрических свойствах полупроводников также указывает на существенные различия между механизмом проводимости металлов и полупроводников.

Удельная проводимость  есть ток, проходящий через единичное сечение под действием электрического поля, напряженность которого равна 1 В/м. Ток этот будет тем больше, чем больше скорость , приобретаемая в этом поле носителями зарядов, и чем больше концентрация носителей зарядов , т. е. число их в единице объема. В жидких и твердых телах и неразреженных газах вследствие «трения», испытываемого движущимися зарядами, скорость их пропорциональна напряженности поля. В этих случаях скорость , соответствующую напряженности поля 1 В/м, называют подвижностью заряда.

Если заряды движутся вдоль поля со скоростью , то в единицу времени через единичное сечение пройдут все заряды, находящиеся на расстоянии  или меньшем от этого сечения (рис. 183). Заряды эти заполняют объем  [м3], и число их равно . Переносимый ими через единичное сечение в единицу времени заряд равен , где  – заряд носителя тока. Следовательно,

.                     (108.1)

240.jpg

Рис. 183. К выводу соотношения

Различие в проводимости металлов и полупроводников связано с огромным различием в концентрации носителей тока. Измерения показали, что в 1 м3 металлов имеется  электронов, т. е. на каждый атом металла приходится примерно по одному свободному электрону. В полупроводниках же концентрация электронов проводимости во много тысяч и даже миллионов раз меньше.

Следующее важное различие в электрических свойствах металлов и полупроводников заключается в характере зависимости проводимости этих веществ от температуры. Мы знаем (§ 48), что при повышении температуры сопротивление металлов растет, т. е. проводимость их уменьшается, проводимость же полупроводников при повышении температуры растет. Подвижность электронов в металлах уменьшается при нагревании, а в полупроводниках она, в зависимости от того, какой температурный интервал рассматривается, может как уменьшаться, так и возрастать с температурой.

Тот факт, что в полупроводниках, несмотря на уменьшение подвижности, проводимость при повышении температуры растет, свидетельствует о том, что при повышении температуры в полупроводниках происходит очень быстрое возрастание числа свободных электронов, и влияние этого фактора пересиливает влияние уменьшения подвижности. При очень низкой температуре (вблизи 0 К) в полупроводниках имеется ничтожно малое число свободных электронов, и поэтому они являются почти совершенными диэлектриками; проводимость их чрезвычайно низка. С возрастанием температуры число свободных электронов резко возрастает, и при достаточно высокой температуре полупроводники могут иметь проводимость, приближающуюся к проводимости металлов.

Эта сильная зависимость числа свободных электронов от температуры является самой характерной особенностью полупроводников, резко отличающей их от металлов, в которых число свободных электронов от температуры не зависит. Она указывает на то, что в полупроводниках, для того чтобы перевести электрон из «связанного» состояния, в котором он не может переходить от атома к атому, в «свободное» состояние, в котором он легко перемещается по телу, необходимо сообщить этому электрону некоторый запас энергии . Эта величина , называемая энергией ионизации, для разных веществ различна, но в общем имеет значения от нескольких десятых электронвольта до нескольких электронвольт. При обычных температурах средняя энергия теплового движения много меньше этой величины, но, как мы знаем (см. том I), некоторые частицы (в частности, некоторые электроны) имеют скорости и энергии значительно большие, чем среднее значение. Определенная, очень небольшая доля электронов имеет достаточный запас энергии, чтобы перейти из «связанного» состояния в «свободное». Эти электроны и обусловливают возможность прохождения электрического тока через полупроводник даже при комнатной температуре.

С повышением температуры число свободных электронов очень быстро возрастает. Так, например, если энергия, необходимая для освобождения электрона,  эВ, то при комнатной температуре примерно только один электрон на  атомов будет иметь запас тепловой энергии, достаточный для его освобождения. Концентрация свободных электронов будет очень мала (около  м-3), но все же достаточна для создания измеримых электрических токов. Но если мы понизим температуру до -80°С, то число свободных электронов уменьшится приблизительно в 500 миллионов раз, и тело практически будет представлять собой диэлектрик. Напротив, при повышении температуры до 200°С число свободных электронов возрастет в 20 тысяч раз, а при повышении температуры до 800°С – в 500 миллионов раз. Проводимость тела при этом будет быстро возрастать, несмотря на противодействующее этому возрастанию уменьшение подвижности свободных электронов.

Таким образом, основное и принципиальное различие между полупроводниками и металлами заключается в том, что в полупроводниках, для того чтобы перевести электрон из связанного состояния в свободное, нужно сообщить ему некоторую добавочную энергию, а в металлах уже при самой низкой температуре имеется большое число свободных электронов. Силы молекулярного взаимодействия в металлах сами по себе оказываются достаточными для того, чтобы освободить часть электронов.

Очень быстрое возрастание числа свободных электронов в полупроводниках при повышении их температуры приводит к тому, что изменение сопротивления полупроводников с температурой в 10-20 раз больше, чем у металлов. Сопротивление металлов изменяется в среднем на 0,3% при изменении температуры на 1°С; у полупроводников же повышение температуры на 1°С может изменить проводимость на 3-6%, а повышение температуры на 100°С – в 50 раз.

Полупроводники, приспособленные для использования их очень большого температурного коэффициента сопротивления, получили в технике название термосопротивлений (или термисторов). Термосопротивления находят много очень важных и все расширяющихся применений в самых разнообразных областях техники: для автоматики и телемеханики, а также в качестве очень точных и чувствительных термометров.

Термометры сопротивления, или, как их называют, болометры, применялись в лабораторной практике уже давно, но раньше они изготовлялись из металлов, и это было связано с рядом трудностей, ограничивавших область их применения. Болометры приходилось делать из длинной тонкой проволоки, чтобы общее их сопротивление было достаточно велико по сравнению с сопротивлением подводящих проводов. Кроме того, изменение сопротивления металлов очень мало, и измерение температуры с помощью металлических болометров требовало чрезвычайно точного измерения сопротивлений. От этих недостатков свободны полупроводниковые болометры, или термосопротивления. Их удельное сопротивление настолько велико, что болометр может иметь размеры в несколько миллиметров или даже несколько десятых долей миллиметра. При таких малых размерах термосопротивление чрезвычайно быстро принимает температуру окружающей среды, что позволяет измерять температуру небольших предметов (например, листьев растений или отдельных участков человеческой кожи).

Чувствительность современных термосопротивлений настолько велика, что с их помощью можно обнаруживать и измерять изменения температуры на одну миллионную долю кельвина. Это дало возможность применять их в современных приборах для измерения интенсивности очень слабого излучения вместо термостолбиков (§ 85).

В тех случаях, которые мы рассматривали выше, добавочная энергия, необходимая для освобождения электрона, сообщалась ему за счет теплового движения, т. е. за счет запаса внутренней энергии тела. Но эта энергия может передаваться электронам и при поглощении телом световой энергии. Сопротивление таких полупроводников при действии на них света значительно уменьшается. Это явление получило название фотопроводимости или внутреннего фотоэлектрического эффекта. Приборы, основанные на этом явлении, в последнее время все шире используются в технике для целей сигнализации и автоматики.

Мы видели, что в полупроводниках лишь очень небольшая доля всех электронов находится в свободном состоянии и участвует в создании электрического тока. Но не следует думать, будто постоянно одни и те же электроны находятся в свободном состоянии, а все остальные – в связанном. Напротив, в полупроводнике все время идут два противоположных процесса. С одной стороны, идет процесс освобождения электронов за счет внутренней или световой энергии; с другой стороны, идет процесс захвата освобожденных электронов, т. е. воссоединения их с тем или иным из оставшихся в полупроводнике ионов – атомов, потерявших свой электрон. В среднем каждый освобожденный электрон остается свободным лишь очень короткое время - от  до  (от одной тысячной до одной стомиллионной секунды). Постоянно некоторая доля электронов оказывается свободной, но состав этих свободных электронов все время изменяется: одни электроны переходят из связанного состояния в свободное, другие – из свободного в связанное. Равновесие между связанными и свободными электронами является подвижным, или динамическим.

 



<< Предыдущая Оглавление Следующая >>