Глава XV. ЭЛЕКТРОМАГНИТНАЯ ИНДУКЦИЯ§ 138. Условия возникновения индукционного тока.Напомним некоторые простейшие опыты, в которых наблюдается возникновение электрического тока в результате электромагнитной индукции. Один из таких опытов изображен на рис. 253. Если катушку, состоящую из большого числа витков проволоки, быстро надевать на магнит или сдергивать с него (рис. 253,а), то в ней возникает кратковременный индукционный ток, который можно обнаружить по отбросу стрелки гальванометра, соединенного с концами катушки. То же имеет место, если магнит быстро вдвигать в катушку или выдергивать из нее (рис. 253,б). Значение имеет, очевидно, только относительное движение катушки и магнитного поля. Ток прекращается, когда прекращается это движение. Рис. 253. При относительном перемещении катушки и магнита в катушке возникает индукционный ток: а) катушка надевается на магнит; б) магнит вдвигается в катушку Рассмотрим теперь несколько дополнительных опытов, которые позволят нам в более общем виде сформулировать условия возникновения индукционного тока. Первая серия опытов: изменение магнитной индукции поля, в котором находится индукционный контур (катушка или рамка). Катушка помещена в магнитное поле, например внутрь соленоида (рис. 254,а) или между полюсами электромагнита (рис. 254,б). Установим катушку так, чтобы плоскость ее витков была перпендикулярна к линиям магнитного поля соленоида или электромагнита. Будем изменять магнитную индукцию поля, быстро изменяя силу тока в обмотке (с помощью реостата) или просто выключая и включая ток (ключом). При каждом изменении магнитного поля стрелка гальванометра дает резкий отброс; это указывает на возникновение в цепи катушки индукционного электрического тока. При усилении (или возникновении) магнитного поля возникнет ток одного направления, при его ослаблении (или исчезновении) – обратного. Проделаем теперь тот же опыт, установив катушку так, чтобы плоскость ее витков была параллельна направлению линий магнитного поля (рис. 255). Опыт даст отрицательный результат: как бы мы ни изменяли магнитную индукцию поля, мы не обнаружим в цепи катушки индукционного тока. Рис. 254. В катушке возникает индукционный ток при изменении магнитной индукции, если плоскость ее витков перпендикулярна к линиям магнитного поля: а) катушка в поле соленоида; б) катушка в поле электромагнита. Магнитная индукция изменяется при замыкании и размыкании ключа или при изменении силы тока в цепи Рис. 255. Индукционный ток не возникает, если плоскость витков катушки параллельна линиям магнитного поля Вторая серия опытов: изменение положения катушки, находящейся в неизменном магнитном поле. Поместим катушку внутрь соленоида, где магнитное поле однородно, и будем быстро поворачивать ее на некоторый угол вокруг оси, перпендикулярной к направлению поля (рис. 256). При всяком таком повороте гальванометр, соединенный с катушкой, обнаруживает индукционный ток, направление которого зависит от начального положения катушки и от направления вращения. При полном обороте катушки на 360° направление индукционного тока изменяется дважды: всякий раз, когда катушка проходит положение, при котором плоскость ее перпендикулярна к направлению магнитного поля. Конечно, если вращать катушку очень быстро, то индукционный ток будет так часто изменять свое направление, что стрелка обычного гальванометра не будет успевать следовать за этими переменами и понадобится иной, более «послушный» прибор. Рис. 256. При вращении катушки в магнитном поле в ней возникает индукционный ток Если, однако, перемещать катушку так, чтобы она не поворачивалась относительно направления поля, а лишь перемещалась параллельно самой себе в любом направлении вдоль поля, поперек его или под каким-либо углом к направлению поля, то индукционный ток возникать не будет. Подчеркнем еще раз: опыт по перемещению катушки проводится в однородном поле (например, внутри длинного соленоида или в магнитном поле Земли). Если поле неоднородно (например, вблизи полюса магнита или электромагнита), то всякое перемещение катушки может сопровождаться появлением индукционного тока, за исключением одного случая: индукционный ток не возникает, если катушка движется так, что плоскость ее все время остается параллельной направлению поля (т. е. сквозь катушку не проходят линии магнитного поля). Третья серия опытов: изменение площади контура, находящегося в неизменном магнитном поле. Подобный опыт можно осуществить по следующей схеме (рис. 257). В магнитном поле, например между полюсами большого электромагнита, поместим контур, сделанный из гибкого провода. Пусть первоначально контур имел форму окружности (рис. 257,а). Быстрым движением руки можно стянуть контур в узкую петлю, значительно уменьшив таким образом охватываемую им площадь (рис. 257,б). Гальванометр покажет при этом возникновение индукционного тока. Рис. 257. В катушке возникает индукционный ток, если изменяется площадь ее контура, находящегося в неизменном магнитном поле и расположенного перпендикулярно к линиям магнитного поля (магнитное поле направлено от наблюдателя) Еще удобнее осуществление опыта с изменением площади контура по схеме, изображенной на рис. 258. В магнитном поле расположен контур , одна из сторон которого ( на рис. 258) сделана подвижной. При каждом ее передвижении гальванометр обнаруживает возникновение в контуре индукционного тока. При этом при передвижении влево (увеличение площади ) индукционный ток имеет одно направление, а при передвижении вправо (уменьшение площади ) – противоположное. Однако и в этом случае изменение площади контура не дает никакого индукционного тока, если плоскость контура параллельна направлению магнитного поля. Рис. 258. При движении стержня и изменении вследствие этого площади контура , находящегося в магнитном поле , в контуре возникает ток. Сопоставляя все описанные опыты, мы можем сформулировать условия возникновения индукционного тока в общей форме. Во всех рассмотренных случаях мы имели контур, помещенный в магнитное поле, причем плоскость контура могла составлять тот или иной угол с направлением магнитной индукции. Обозначим площадь, ограниченную контуром, через , магнитную индукцию поля через , а угол между направлением магнитной индукции и плоскостью контура через . В таком случае составляющая магнитной индукции, перпендикулярная к плоскости контура, будет равна по модулю (рис. 259) . Рис. 259. Разложение магнитной индукции на составляющую , перпендикулярную к плоскости индукционного контура, и составляющую , параллельную этой плоскости Произведение мы будем называть потоком магнитной индукции или, короче, магнитным потоком через контур; эту величину мы будем обозначать буквой . Таким образом, . (138.1) Во всех без исключения рассмотренных случаях мы тем или иным способом изменяли магнитный поток . В одних случаях мы осуществляли это путем изменения, магнитной индукции (рис. 254); в других случаях изменялся угол (рис. 256); в третьих – площадь (рис. 257). В общем случае, конечно, возможно одновременное изменение всех этих величин, определяющих магнитный поток через контур. Внимательное рассмотрение самых разнообразных индукционных опытов показывает, что индукционный ток возникает тогда и только тогда, когда изменяется магнитный поток ; индукционный ток никогда не возникает, если магнитный поток через данный контур остается неизменным. Итак: При всяком изменении магнитного потока через проводящий контур в этом контуре возникает электрический ток. В этом и заключается один из важнейших законов природы – закон электромагнитной индукции, открытый Фарадеем в 1831 г. 138.1. Катушки I и II находятся одна внутри другой (рис. 260). В цепь первой включена батарея, в цепь второй – гальванометр. Если в первую катушку вдвигать или выдвигать из нее железный стержень, то гальванометр обнаружит возникновение во второй катушке индукционного тока. Объясните этот опыт. Рис. 260. К упражнению 138.1 138.2. Проволочная рамка вращается в однородном магнитном поле вокруг оси, параллельной магнитной индукции. Будет ли в ней возникать индукционный ток? 138.3. Возникает ли э. д. с. индукции на концах стальной оси автомобиля при его движении? При каком направлении движения автомобиля эта э. д. с. наибольшая и при каком наименьшая? Зависит ли э. д. с. индукции от скорости автомобиля? 138.4. Шасси автомобиля вместе с двумя осями составляет замкнутый проводящий контур. Индуцируется ли в нем ток при движении автомобиля? Как согласовать ответ этой задачи с результатами задачи 138.3? 138.5. Почему при ударе молнии иногда в нескольких метрах от места удара обнаруживались повреждения чувствительных электроизмерительных приборов, а также плавились предохранители в осветительной сети?
|