Читать в оригинале

<< ПредыдущаяОглавлениеСледующая >>


§ 104. Сферическая аберрация

Возникновение этой погрешности можно проследить с помощью легко доступных опытов. Возьмем простую собирающую линзу 1 (например, плосковыпуклую линзу) по возможности с большим диаметром и малым фокусным расстоянием. Небольшой и в то же время достаточно яркий источник света можно получить, если, просверлив в большом экране 2 отверстие диаметром около , укрепить перед ним кусочек матового стекла 3, освещенного сильной лампой с небольшого расстояния. Еще лучше сконцентрировать на матовом стекле свет от дугового фонаря. Эта «светящаяся точка» должна быть расположена на главной оптической оси линзы (рис. 228, а).

Рис. 228. Экспериментальное изучение сферической аберрации: а) линза, на которую падает широкий пучок, дает расплывчатое изображение; б) центральная зона линзы дает хорошее резкое изображение

С помощью указанной линзы, на которую падают широкие световые пучки, не удается получить резкое изображение источника. Как бы мы ни перемещали экран 4, на нем получается довольно расплывчатое изображение. Но если ограничить пучки, падающие на линзу, поставив перед ней кусок картона 5 с небольшим отверстием против центральной части (рис. 228, б), то изображение значительно улучшится: можно найти такое положение экрана 4, что изображение источника на нем будет достаточно резким. Это наблюдение вполне согласуется с тем, что нам известно относительно изображения, получаемого в линзе с помощью узких приосевых пучков (ср. §89).

Рис. 229. Экран с отверстиями для изучения сферической аберрации

Заменим теперь картон с центральным отверстием куском картона с небольшими отверстиями, расположенными вдоль диаметра линзы (рис. 229). Ход лучей, проходящих через эти отверстия, можно проследить, если слегка задымить воздух за линзой. Мы обнаружим, что лучи, проходящие через отверстия, расположенные на различном расстоянии от центра линзы, пересекаются в разных точках: чем дальше от оси линзы выходит луч, тем сильнее он преломляется и тем ближе к линзе находится точка его пресечения с осью.

Таким образом, наши опыты показывают, что лучи, проходящие через отдельные зоны линзы, расположенные на разных расстояниях от оси, дают изображения источника, лежащие на разных расстояниях от линзы. При данном положении экрана разные зоны линзы дадут на нем: одни — более резкие, другие — более расплывчатые изображения источника, которые сольются в светлый кружок. В результате линза большого диаметра дает изображение точечного источника не в виде точки, а в виде расплывчатого светлого пятнышка.

Итак, при использовании широких световых пучков мы не получаем точечного изображения даже в том случае, когда источник расположен на главной оси. Эта погрешность оптических систем называется сферической аберрацией.

Рис. 230. Возникновение сферической аберрации. Лучи, выходящие из линзы на разной высоте над осью, дают изображения точки  в разных точках

Для простых отрицательных линз благодаря сферической аберрации фокусное расстояние лучей, проходящих через центральную зону линзы, также будет более значительным, чем для лучей, проходящих через периферическую зону. Другими словами, параллельный пучок, проходя через центральную зону рассеивающей линзы, становится менее расходящимся, чем пучок, идущий через наружные зоны. Заставив свет после собирающей линзы пройти через рассеивающую, мы увеличим фокусное расстояние. Это увеличение будет, однако, менее значительным для центральных лучей, чем для лучей периферических (рис. 231).

Рис. 231. Сферическая аберрация: а) в собирающей линзе; б) в рассеивающей линзе

Таким образом, более длинное фокусное расстояние собирающей линзы, соответствующее центральным лучам, увеличится в меньшей степени, чем более короткое фокусное расстояние периферических лучей. Следовательно, рассеивающая линза благодаря своей сферической аберрации выравнивает различие фокусных расстояний центральных и периферических лучей, обусловленное сферической аберрацией собирающей линзы. Правильно рассчитав комбинацию собирающей и рассеивающей линз, мы можем столь полно осуществить это выравнивание, что сферическая аберрация системы из двух линз: будет практически сведена к нулю (рис 232). Обычно обе простые линзы склеиваются (рис. 233).

Рис. 232. Исправление сферической аберрации путем комбинирования собирающей и рассеивающей линз

Рис. 233. Склеенный астрономический объектив, исправленный на сферическую аберрацию

Из сказанного видно, что уничтожение сферической аберрации осуществляется комбинацией двух частей системы сферические аберрации которых взаимно компенсируют друг друга. Аналогичным образом мы поступаем и при исправлении других недостатков системы.

Примером оптической системы с устраненной сферической аберрацией могут служить астрономические объективы. Если звезда находится на оси объектива, то ее изображение практически не искажено аберрацией, хотя диаметр объектива может достигать нескольких десятков сантиметров.

 



<< ПредыдущаяОглавлениеСледующая >>