§ 183. Законы фотоэлектрического эффектаИзложенное в § 182 показывает, что фотоэффект характеризуется числом электронов, освобождаемых светом за единицу времени (т. е. силой фототока), и скоростью этих электронов. Чем больше число вылетающих за единицу времени электронов, тем быстрее идет разряд электрометра; чем больше скорость электронов, тем более сильное тормозящее поле надо применить, чтобы воспрепятствовать их удалению из пластинки. Для измерения этих двух важнейших характеристик фотоэффекта — силы тока и скорости электронов — служит опыт, схематически изображенный на рис. 331. Рис. 331. Схема опыта по измерению фототока и скорости фотоэлектронов: 1 — освещаемая пластинка (катод), 2 — вспомогательный электрод (анод), 3 — окошко, прозрачное для ультрафиолетового излучения, 4 — движок потенциометра Пластинка 1, из которой освобождаются фотоэлектроны, присоединена к одному полюсу батареи, второй полюс которой соединен через потенциометр и гальванометр с пластинкой 2. Обе пластинки 1 и 2 заключены в сосуд, из которого откачивается воздух для того, чтобы столкновения электронов с молекулами газа не вносили осложнения в наблюдаемые явления, а также для того, чтобы предохранить пластинки от окисления. Ультрафиолетовое излучение, падающее на пластинку 1, проникает через кварцевое окошко 3. Электроны, вылетающие из пластинки 1, попадают в электрическое поле, имеющееся между обеими пластинками. Напряжение между пластинками можно изменять путем перемещения движка 4 потенциометра. Если поле достаточно сильно и направлено так, что оно увлекает электроны от пластины 1 к пластинке 2, то все вылетевшие электроны достигают пластинки 2, а следовательно, через гальванометр идет ток, который определяется числом электронов, освобождаемых светом за единицу времени. Этот ток, называемый током насыщения, и определяет силу фототока. Если же поле тормозит электроны, то, сделав его достаточно сильным, можно задержать все вылетевшие электроны. По напряженности задерживающего поля можно определить скорость вылетающих электронов. Пусть скорость вылетающего электрона равна
Исследование при помощи опытов, подобных описанному, установило следующие законы фотоэффекта. 1. Число электронов, освобожденных светом за единицу времени (т.е. ток насыщения), прямо пропорционально световому потоку. 2. Скорость вылетающих фотоэлектронов не зависит от освещенности, а определяется частотой света. Схема, изображенная на рис. 331, непригодна для точных измерений. При расстоянии между пластинками, большом по сравнению с их размерами, не удается перехватить все электроны, освобожденные светом (получить истинное значение силы тока насыщения), и затруднительно установить точное значение Естественно возникает вопрос, как зависят количество и скорость освобождаемых светом электронов от вещества освещенного металла. Исследование вылета электронов из нагретых металлов (см. том II, §§89 и 90) показало, что каждому веществу соответствует своя работа выхода, т. е. каждый металл характеризуется определенной энергией, которую необходимо сообщить электрону, для того чтобы он мог преодолеть силы, удерживающие его внутри металла. К совершенно тем же выводам мы приходим, изучая испускание электронов под действием света. Для некоторых металлов удалось определить работу выхода как при помощи явления испускания электронов при нагревании, так и при помощи фотоэлектрического эффекта. Оба метода дали одни и те же значения. Так, например, для вольфрама получены следующие значения работы выхода:
Пусть из некоторого металла, для которого работа выхода равна Пользуясь найденными соотношениями, второй закон фотоэффекта можно формулировать так: полная энергия, получаемая электроном от света частоты Испуская под действием света электроны, металл должен заряжаться положительно. Вследствие этого возникает электрическое поле, затрудняющее дальнейшее испускание электронов. Какова же предельная разность потенциалов
где
|