Читать в оригинале

<< ПредыдущаяОглавлениеСледующая >>


§ 59 Опыты с электромагнитными волнами

Чтобы воспроизвести некоторые из опытов Герца и получить тем самым более подробное представление об электромагнитной волне, в настоящее время нет надобности обращаться к старинной «искровой» технике возбуждения волн. Мы уже знаем, как с помощью автоколебательных систем — генераторов с электронными лампами — была решена задача получения незатухающих электрических колебаний (§§ 30, 31). Существенно, что в случае незатухающего гармонического колебания излучаемая передатчиком энергия сконцентрирована на одной частоте, а не распределена по всему спектру, как это имеет место при излучении сильно затухающих колебаний. Благодаря этому приемник, настроенный в резонанс на эту частоту, поставлен в значительно более выгодные условия.

Для опытов целесообразно воспользоваться достаточно короткими электромагнитными волнами, чтобы размеры приборов — резонансных вибраторов, экранов, призм и т. п. — были не слишком велики. Наиболее удобны волны, имеющие длину несколько сантиметров, В настоящее время во многих школах имеется передающая и приемная аппаратура, работающая на трехсантиметровых волнах.

Современная радиотехника использует и миллиметровые и еще более короткие (субмиллиметровые) волны, но для описываемых ниже опытов столь малые длины волн неудобны. Эти опыты можно осуществить и с волнами метрового диапазона (например, , когда длина резонансного вибратора составляет ). Однако сантиметровый и дециметровый диапазоны наиболее удобны: с приборами на длину волны  опыты следует делать на открытом воздухе, на ровном открытом месте, так как в противном случае результаты искажаются из-за отражения радиоволн от окружающих предметов (прежде всего металлических: железные балки в здании, электропроводка, телеграфные провода и т. п.).

Перечислим некоторые из возможных опытов, предполагая,  что генератор снабжен излучающим вибратором, а приемник — приемным вибратором.

Отражение, преломление, стоячие волны. В этих опытах излучающий и приемный вибраторы надо располагать параллельно друг другу, например оба вертикально.

При включении генератора гальванометр в приемнике показывает отклонение. Если между излучателем и приемником поставить теперь металлический экран (например, железный лист), размеры которого велики по сравнению с длиной волны (§ 41), то можно наблюдать образование тени: когда приемный вибратор заслонен листом, ток в гальванометре резко падает. При устранении экрана или при вынесении приемного вибратора из области тени ток опять возрастает (рис. 127).

Рис. 127. Образование тени. В нижней части рисунка расположение приборов показано в плане: 1 — генератор с излучающим вибратором, 2 — экран, 3 — приемник с индикатором

Тело человека также отбрасывает заметную тень: если кто-либо пройдет между излучающим и приемным вибраторами, ток в индикаторе упадет и вновь возрастет.

Взяв вместо металлического экрана лист картона, фанеры, толстую деревянную доску, вообще экран из какого-либо изолирующего материала, нетрудно убедиться, что они прозрачны для исследуемых электромагнитных волн.

Заслонив приемник от излучателя металлическим листом 1 (рис. 128), нетрудно наблюдать отражение электромагнитной волны от второго металлического листа 2. Передвигая лист 2 вдоль прямой , параллельной отрезку  (излучатель — приемник), мы обнаружим, что наиболее сильный отклик (отклик индикатора) возникает тогда, когда лист 2 находится против середины отрезка  и его плоскость параллельна . Мы убеждаемся, таким образом, в справедливости закона равенства угла падения и угла отражения (§ 40). Замена металлического листа 2 экраном из изолирующего материала показывает, что от такого экрана отражение получается очень слабое.

Рис. 128. Отражение электромагнитной волны:  — угол падения,  — угол отражения

Отражением от металла можно воспользоваться для того, чтобы получить направленное излучение в виде почти плоской волны. Для этого надо поместить излучающий вибратор в фокусе цилиндрического зеркала из металлического листа, согнутого по дуге параболы (рис. 129, а). Интенсивность плоской волны, выходящей из такого рефлектора, существенно больше, чем в ненаправленном излучении самого вибратора в отсутствие рефлектора. Таким же рефлектором можно снабдить и приемный вибратор (рис. 129, б), что повышает его чувствительность. Описанные выше опыты лучше производить поэтому с вибраторами, снабженными рефлекторами. Провода, идущие от излучающего вибратора к генератору, пропускаются через отверстие, размер которого одна — две длины волны, проделанное в рефлекторе. У приемного вибратора провода к гальванометру можно пропустить через маленькие отверстия в рефлекторе. Размеры рефлекторов должны быть в три — пять раз больше .

Рис. 129. Параболический рефлектор у излучающего вибратора  и у приемного

Следующий опыт показывает, что электромагнитная волна, проходя из одного прозрачного материала в другой, испытывает преломление, т. е. изменяется направление ее распространения. Явление преломления волн на границе двух веществ также принадлежит к числу общеволновых явлений, но мы ранее не останавливались на нем, так как наблюдать его на звуковых или поверхностных волнах в воде не особенно просто. (Легче всего наблюдать и исследовать преломление на световых волнах, и в разделе «Геометрическая оптика» это явление рассматривается подробно).

Для опыта с преломлением электромагнитной волны длиной, например,  надо изготовить из парафина или асфальта призму с преломляющим углом, равным примерно 30° (рис. 130). Размеры этой призмы должны быть велики по сравнению с . На рис. 131 показано, как меняется направление распространения волны вследствие преломления в такой призме. Если в отсутствие призмы наибольший отклик в приемном вибраторе получается в положении , то при наличии призмы волна преломляется и наибольший отклик получается в . Преломление происходит на двух гранях призмы: при переходе волны из воздуха в парафин и затем при ее выходе из парафина в воздух. Отклонение волны от первоначального направления распространения составляет (в зависимости от материала призмы и длины волны) .

Рис. 130. Призма из парафина или асфальта

Рис. 131. Преломление электромагнитной волны в призме

На рис. 132 изображена постановка опыта для получения стоячей электромагнитной волны. Плоский металлический экран ставится против рефлектора излучающего вибратора так, чтобы отраженная волна распространялась навстречу падающей. Если теперь на пути от рефлектора к экрану перемещать приемный вибратор, то ток в гальванометре будет поочередно то увеличиваться (пучности), то уменьшаться (узлы).

Рис. 132. Образование стоячей электромагнитной волны

Расстояние между двумя соседними пучностями или двумя соседними узлами равно, как мы знаем,  (§ 47). Если нам заранее известна частота  колебаний генератора, то, измерив указанным путем , мы можем но формуле

найти скорость  распространения электромагнитной волны в воздухе. При самых точных измерениях такого рода она оказывается совпадающей со скоростью света.

В описанном опыте остался пока невыясненным вопрос о том, какие пучности и узлы регистрирует приемный вибратор — колебаний электрического ноля или колебаний магнитного поля. Ответ мы получим в следующем разделе.

Рис. 133. Наиболее сильный ток в индикаторе возникает только при вертикальном расположении приемного вибратора. При любом горизонтальном положении вибратора тока нет.

Поперечность электромагнитных волн. Радиопеленгация. Оставаясь на каком-то неизменном расстоянии от вертикального излучающего вибратора, повернем приемный вибратор из вертикального в любое горизонтальное положение. Мы увидим, что ток в индикаторе приемника падает при этом до нуля (рис. 133). Объяснить это можно только тем, что элкетрическое поле приходящей волны имеет вертикальное направление. Действительно, такое поле может перемещать заряды (вызывать ток) вдоль приемного вибратора, когда он вертикален, и не может этого делать, когда он горизонтален. Отсюда следует, что в описанном выше опыте со стоячей волной приемный вибратор выявлял узлы и пучности электрического поля.

Повторим такой же опыт, как на рис. 133, но возьмем вместо приемного вибратора проволочный виток. При этом получается следующее. Когда виток расположен в вертикальной плоскости, проходящей через излучающий вибратор, ток в нем есть. Но при всяком повороте витка на  от указанной плоскости ток в нем исчезает (рис. 134).

Рис. 134. Наиболее сильный ток в приемном витке получается при его расположении, показанном слева. В двух других изображенных положения тока нет

Мы знаем, что ток в витке (или катушке) наводится переменным магнитным полем только в том случае, если это поле пронизывает виток. Следовательно, отсутствие тока при расположениях витка, показанных на рис. 134 посередине и справа, объясняется тем, что магнитное поле приходящей волны направлено горизонтально и перпендикулярно к направлению излучения. Действительно, при этом оно пронизывает виток в первом положении и не пронизывает в двух других.

Мы приходим, таким образом, к выводу, что напряженность  и индукция  электрического и магнитного полей в волне перпендикулярны друг к другу и к направлению распространения волны (рис. 135); при этом направление  совпадает с направлением вибратора, а вектор  лежит в плоскости, перпендикулярной к вибратору.

Рис. 135. Расположение векторов электрического и магнитного полей при вертикальном излучателе для волн, распространяющихся в горизонтальном направлении

Нами исследован здесь случай вертикального вибратора и горизонтального направления распространения волны. Исследование любых других направлений распространения показывает, что для всякого из них остается справедливым аналогичное расположение векторов  и :1) оба они перпендикулярны к направлению распространения, а значит, и колебания их происходят перпендикулярно к этому направлению, т. е. электромагнитная волна поперечина; 2) вектор  лежит в плоскостях,  проходящих через излучающий вибратор, а вектор  — перпендикулярно к этим плоскостям (рис 136).

Рис. 136. Электромагнитная волна поперечна

Поперечность колебаний является совершенно общим свойством всякой электромагнитной волны, не зависящим ни от выбора направления распространения, ни от характера излучателя. Таким же общим свойством является и взаимная перпендикулярность полей  и  в электромагнитной волне. Мы еще вернемся к этому вопросу при изучении световых волн.

Возвращаясь к рис.136, можно заметить следующее: если мы установили направления электрического и магнитного полей  и , то мы найдем тем самым направление, по которому приходит волна. Другими словами, мы узнаем направление на излучатель волны из места, где производится прием. Направление электрического поля почти для всех применяемых в технике антенн вертикально. Установить же направление магнитного поля можно с помощью приемного витка (или катушки из нескольких витков – так называемой рамочной антенны). На этом основана радиопеленгация – определение направления из данного пункта на принимаемую радиостанцию.

Рис. 137 изображает переносной радиопеленгатор - приемник, снабженный рамочной антенной, которую можно поворачивать вокруг вертикальной оси. Такую антенну нетрудно изготовить собственными силами. Присоединив ее к обычному широковещательному ламповому приемнику (клеммы «антенна» и «земля»), можно произвести пеленгацию мощных радиостанций.

Рис. 137. Внешний вид переносного радиопеленгатора

Обычно при пеленгации рамочную антенну поворачивают в такое положение, при котором интенсивность приема проходит через нуль (это точнее, чем установка на максимальную интенсивность). При таком положении индукция  магнитного поля волны лежит в плоскости антенны, а значит, направление на радиостанцию — это прямая, перпендикулярная к плоскости антенны. Прибор не указывает, по какую сторону от антенны находится на этой прямом пеленгуемая станция, но обычно это известно заранее.

Если направление на радиостанцию (пеленг) определено из двух пунктов, расстояние между которыми известно ( и  на рис. 138), то, построив по известной стороне  и двум углам треугольник, можно засечь радиостанцию, т. е. определить ее местонахождение.

Рис. 138. Пеленгация радиопередатчика из двух точек определяет его положение

Принцип, положенный в основу пеленгации, используется и для целей радионавигации — вождения кораблей и самолетов по определенному направлению, заданному специальными передатчиками (радиомаяками). На корабле или самолете ставится при этом специальный приемник с рамочной антенной — радиокомпас, показывающий отклонения от требуемого курса. Иногда сигналы, принимаемые радиокомпасом, используются для управления рулевыми механизмами, т. е. осуществляется автоматическое сохранение заданного курса (автопилот).

 



<< ПредыдущаяОглавлениеСледующая >>