7.5. Выравнивание статистических рядовВо всяком статистическом распределении неизбежно присутствуют элементы случайности, связанные с тем, что число наблюдений ограничено, что произведены именно те, а не другие опыты, давшие именно те, а не другие результаты. Только при очень большом числе наблюдений эти элементы случайности сглаживаются, и случайное явление обнаруживает в полной мере присущую ему закономерность. На практике мы почти никогда не имеем дела с таким большим числом наблюдений и вынуждены считаться с тем, что любому статистическому распределению свойственны в большей или меньшей мере черты случайности. Поэтому при обработке статистического материала часто приходится решать вопрос о том, как подобрать для данного статистического ряда теоретическую кривую распределения, выражающую лишь существенные черты статистического материала, но не случайности, связанные с недостаточным объемом экспериментальных данных. Такая задача называется задачей выравнивания (сглаживания) статистических рядов. Задача выравнивания заключается в том, чтобы подобрать теоретическую плавную кривую распределения, с той или иной точки зрения наилучшим образом описывающую данное статистическое распределение (рис. 7.5.1). Рис. 7.5.1 Задача о наилучшем выравнивании статистических рядов, как и вообще задача о наилучшем аналитическом представлении эмпирических функций, есть задача в значительной мере неопределенная, и решение ее зависит от того, что условиться считать «наилучшим». Например, при сглаживании эмпирических зависимостей очень часто исходят из так называемого принципа или метода наименьших квадратов (см. 14.5), считая, что наилучшим приближением к эмпирической зависимости в данном классе функций является такое, при котором сумма квадратов отклонений обращается в минимум. При этом вопрос о том, в каком именно классе функций следует искать наилучшее приближение, решается уже не из математических соображений, а из соображения, связанных с физикой решаемой задачи, с учетом характера полученной эмпирической кривой и степени точности произведенных наблюдений. Часто принципиальный характер функции, выражающей исследуемую зависимость, известен заранее из теоретических соображении, из опыта же требуется получить лишь некоторые численные параметры, входящие в выражение функции; именно эти параметры подбираются с помощью метода наименьших квадратов. Аналогично обстоит дело и с задачей выравнивания статистических рядов. Как правило, принципиальный вид теоретической кривой выбирается заранее из соображений, связанных с существом задачи, а в некоторых случаях просто с внешним видом статистического распределения. Аналитическое выражение выбранной кривой распределения зависит от некоторых параметров; задача выравнивания статистического ряда переходит в задачу рационального выбора тех значений параметров, при которых соответствие между статистическим и теоретическим распределениями оказывается наилучшим. Предположим, например, что исследуемая величина есть ошибка измерения, возникающая в результате суммирования воздействий множества независимых элементарных ошибок; тогда из теоретических соображений можно считать, что величина подчиняется нормальному закону: (7.5.1) и задача выравнивания переходит в задачу о рациональном выборе параметров и в выражении (7.5.1). Бывают случаи, когда заранее известно, что величина распределяется статистически приблизительно равномерно на некотором интервале; тогда можно поставить задачу о рациональном выборе параметров того закона равномерной плотности которым можно наилучшим образом заменить (выровнять) заданное статистическое распределение. Следует при этом иметь в виду, что любая аналитическая функция , с помощью которой выравнивается статистическое распределение, должна обладать основными свойствами плотности распределения: (7.5.2) Предположим, что, исходя из тех или иных соображений, нами выбрана функция , удовлетворяющая условиям (7.5.2), с помощью корой мы хотим выровнять данное статистическое распределение; в выражение этой функции входит несколько параметров ; требуется подобрать эти параметры так, чтобы функция наилучшим образом описывала данный статистический материал. Один из методов, применяемых для решения этой задачи, - это так называемый метод моментов. Согласно методу моментов, параметры выбираются с таким расчетом, чтобы несколько важнейших числовых характеристик (моментов) теоретического распределения были равны соответствующим статистическим характеристикам. Например, если теоретическая кривая зависит только от двух параметров и , эти параметры выбираются так, чтобы математическое ожидание и дисперсия теоретического распределения совпадали с соответствующими статистическими характеристиками и . Если кривая зависит от трех параметров, можно подобрать их так, чтобы совпали первые три момента и т.д. При выравнивании статистических рядов может оказаться полезной специально разработанная система кривых Пирсона, каждая из которых зависит в общем случае от четырех параметров. При выравнивании эти параметры выбираются с тем расчетом, чтобы сохранить первые четыре момента статистического распределения (математическое ожидание, дисперсию, третий и четвертый моменты). Оригинальный набор кривых распределения, построенных по иному принципу, дал Н.А. Бородачев. Принцип, на котором строится система кривых Н.А. Бородачева, заключается в том, что выбор типа теоретической кривой основывается не на внешних формальных признаках, а на анализе физической сущности случайного явления или процесса, приводящего к тому или иному закону распределения. Следует заметить, что при выравнивании статистических рядов нерационально пользоваться моментами порядка выше четвертого, так как точность вычисления моментов резко падает с увеличением их порядка. Пример. 1. В 7.3 приведено статистическое распределение боковой ошибки наводки при стрельбе с самолета по наземной цели. Требуется выровнять это распределение с помощью нормального закона: . Нормальный закон зависит от двух параметров: и . Подберем эти параметры так, чтобы сохранить первые два момента – математическое ожидание и дисперсию – статистического распределения. Вычислим приближенно статистическое среднее ошибки наводки по формуле (7.47), причем за представителя каждого разряда примем его середину: Для определения дисперсии вычислим сначала второй начальный момент по формуле (7.4.9), полагая Пользуясь выражением дисперсии через второй начальный момент (формула (7.4.6)), получим: Выберем параметры и нормального закона так, чтобы выполнялись условия: то есть примем: . Напишем выражение нормального закона: Пользуясь в табл. 3 приложения, вычислим значения на границах разрядов Построим на одном графике (рис. 7.5.2) гистограмму и выравнивающую ее кривую распределения. Из графика видно, что теоретическая кривая распределения , сохраняя, в основном существенные особенности статистического распределения, свободна от случайных неправильностей хода гистограммы, которые, по-видимому, могут быть отнесены за счет случайных причин; более серьезное обоснование последнему суждению будет дано в следующем параграфе. Рис. 7.5.2 Примечание. В данном примере при определении , мы воспользовались выражением (7.4.6) статистической дисперсии через второй начальный момент. Этот прием можно рекомендовать только в случае, когда математическое ожидание исследуемой случайной величины сравнительно невелико; в противном случае формула (7.4.6) выражает дисперсию как разность близких чисел и дает весьма малую точность. В случае, когда это имеет место, рекомендуется либо вычислять непосредственно по формуле (7.4.3), или перенести начало координат в какую-либо точку, близкую к , и затем применить формулу (7.4.6). Пользование формулой (7.4.3) равносильно перенесению начала координат в точку ; это может оказаться неудобным, так как выражение может быть дробным, и вычитание из каждого при этом излишне осложняет вычисления; поэтому рекомендуется переносить начало координат в какое-либо круглое значение , близкое к . Пример 2. С целью исследования закона распределения ошибки измерения дальности с помощью радиодальномера произведено 400 измерений дальности. Результаты опытов представлены в виде статистического ряда:
Выровнять статистический ряд с помощью закона равномерной плотности. Решение. Закон равномерной плотности выражается формулой и зависит от двух параметров и . Эти параметры следует выбрать так, чтобы сохранить первые два момента статистического распределения – математическое ожидание и дисперсию . Из примера 5.8 имеем выражения математического ожидания и дисперсии для закона равномерной плотности: Для того, чтобы упростить вычисления, связанные с определением статистических моментов, перенесем начало отсчета в точку и примем за представителя его разряда его середину. Ряд распределения имеет вид: где - среднее для разряда значение ошибки радиодальномера при новом начале отсчета. Приближенное значение статистического среднего ошибки равно: Второй статистический момент величины равен: , откуда статистическая дисперсия: . Переходя к прежнему началу отсчета, получим новое статистическое среднее: в ту же статистическую дисперсию: . Параметры закона равномерной плотности определяются уравнениями: . Решая эти уравнения относительно и , имеем: , откуда . На рис. 7.5.3. показаны гистограмма и выравнивающий ее закон равномерной плотности . Рис. 7.5.3
|