Читать в оригинале

<< ПредыдущаяОглавлениеСледующая >>


8.4. Законы распределения отдельных величин, входящих в систему. Условные законы распределения

Зная закон распределения системы двух случайных величин, можно всегда определить законы распределения отдельных величин входящих в систему. В  мы уже вывели выражения для функций распределения отдельных величин, входящих в систему, через функцию распределения системы, а именно, мы показали, что

                                                (8.4.1)

Выразим теперь плотность распределения каждой из величин входящих в систему, через плотность распределения системы. Пользуясь формулой (8.3.5), выражающей функцию распределения через плотность распределения, напишем:

,

откуда, дифференцируя по , получим выражение для плотности распределения величины :

                                                 (8.4.2)

Аналогично

                                                        (3.4.3)

Таким образом, для того чтобы получить плотность распределения одной из величин, входящих в систему, нужно плотность распределения системы проинтегрировать в бесконечных пределах по аргументу, соответствующему другой случайной величине.

Формулы (8.4.1), (8.4.2) и (8.4.3) дают  возможность, зная  закон распределения системы (заданный в виде функции распределения или плотности распределения), найти законы распределения отдельных величин, входящих в систему. Естественно, возникает вопрос об обратной задаче: нельзя ли по законам распределения отдельных величин, входящих в. систему, восстановить закон распределения системы? Оказывается, что в общей случае этого сделать нельзя: зная только законы распределения отдельных величин, входящих в систему, не всегда можно найти закон распределения системы. Для того чтобы исчерпывающим образом охарактеризовать систему, недостаточно знать распределение каждой из величин, входящих в систему; нужно еще знать зависимость между величинами, входящими в систему. Эта зависимость может быть охарактеризована с помощью так называемых условных законов распределения.

Условным законом распределения величины , входящей в систему , называется ее закон распределения, вычисленный при условии, что другая случайная величина  приняла определенное значение .

Условный закон распределения можно задавать как функцией распределения, так и плотностью. Условная функция распределения обозначается  условная плотность распределения . Так как системы непрерывных величин имеют основное практическое значение, мы в данном курсе ограничимся рассмотрением условных законов, заданных плотностью распределения.

Чтобы нагляднее пояснить понятие условного закона распределения, рассмотрим пример. Система случайных величин  и  представляет собой длину и вес осколка снаряда. Пусть нас интересует длина осколка  безотносительно к его весу; это есть случайная величина, подчиненная закону распределения с плотностью . Этот закон распределения мы можем исследовать, рассматривая все без исключения осколки и оценивая их только по длине;  есть безусловный закон распределения длины осколка. Однако нас может интересовать и закон распределения длины осколка вполне определенного веса, например 10 г. Для того чтобы его определить, мы будем исследовать не все осколки, а только определенную весовую группу, в которой вес приблизительно равен 10 г, и получим условный закон распределения длины осколка при весе 10 г с плотностью  при . Этот условный закон распределения вообще отличается от безусловного ; очевидно, более тяжелые осколки должны в среднем обладать и большей длиной; следовательно, условный закон распределения длины существенно зависит от веса .

Зная закон распределения одной из величин, входящих в систему, и условный закон распределения второй, можно составить закон распределения системы. Выведем формулу, выражающую это соотношение, для непрерывных случайных величин. Для этого воспользуемся понятием об элементе вероятности. Рассмотрим прилежащий к точке  элементарный прямоугольник  со сторонами ,  (рис. 8.4.1). Вероятность попадания в этот прямоугольник - элемент вероятности  - равна вероятности одновременного попадания случайной точки  в элементарную полосу I, опирающуюся на отрезок , и в полосу II, опирающуюся на отрезок :

.

Рис.8.4.1

Вероятность произведения этих двух событий, по теореме умножения вероятностей, равна вероятности попадания в элементарную полосу I, умноженной на условную вероятность попадания в элементарную полосу II, вычисленную при условии, что первое событие имело место. Это условие в пределе равносильно условию , следовательно,

,

откуда

,                                            (8.4.4)

т.е. плотность распределения системы двух величин равна плотности распределения одной из величин, входящих в систему, умноженной на условную плотность распределения другой величины, вычисленную при условии, что первая величина приняла заданное значение.

Формулу (8.4.4) часто называют теоремой умножения законов распределения. Эта теорема в схеме случайных величин аналогична теореме умножения вероятностей в схеме событий.

Очевидно, формуле (8.4.4) можно придать другой вид, если задать значение не величины , а величины :

.                   (8.4.5)

Разрешая формулы (8.4.4) и (8.4.5) относительно  и , получим выражения условных законов распределения через безусловные:

                                                     (8.4.6)

или, применяя формулы (8.4.2) и (8.4.3),

                                         (8.4.7)

 



<< ПредыдущаяОглавлениеСледующая >>