2.4. Случайная величинаОдним из важнейших основных понятий теории вероятностей является понятие о случайной величине. Случайной величиной называется величина, которая в результате опыта может принять то или иное значение, причем неизвестно заранее, какое именно. Примеры случайных величин: 1) число попаданий при трех выстрелах; 2) число вызовов, поступавших на телефонную станцию за сутки; 3) частота попадания при 10 выстрелах. Во всех трех приведенных примерах случайные величины могут принимать отдельные, изолированные значения, которые можно заранее перечислить. Так, в примере 1) эти значения: 0, 1, 2, 3; в примере 2): 1,2, 3, 4, …; в примере 3) 0; 0,1; 0,2; …; 1,0. Такие случайные величины, принимающие только отделенные друг от друга значения, которые можно заранее перечислить, называются прерывными или дискретными случайными величинами. Существуют случайные величины другого типа, например: 1) абсцисса точки попадания при выстреле; 2) ошибка взвешивания тела на аналитических весах; 3) скорость летательного аппарата в момент выхода на заданную высоту; 4) вес наугад взятого зерна пшеницы. Возможные значения таких случайных величин не отделены друг от друга; они непрерывно заполняют некоторый промежуток, который иногда имеет резко выраженные границы, а чаще – границы неопределенные, расплывчатые. Такие случайные величины, возможные значения которых непрерывно заполняют некоторый промежуток, называются непрерывными случайными величинами. Понятие случайной величины играет весьма важную роль в теории вероятностей. Если «классическая» теория вероятностей оперировала по преимуществу с событиями, то современная теория вероятностей предпочитает, где только возможно, оперировать со случайными величинами. Приведем примеры типичных для теории вероятностей приемов перехода от событий к случайным величинам. Производится опыт, в результате которого может появиться или не появиться некоторое событие. Вместо события можно рассмотреть случайную величину , которая равна 1, если событие происходит, и равна 0, если событие не происходит. Случайная величина, очевидно, является прерывной; она имеет два возможных значения: 0 и 1. Эта случайная величина называется характеристической случайной величиной события . На практике часто вместо событий оказывается удобнее оперировать их характеристическими случайными величинами. Например, если производится ряд опытов, в каждом из которых возможно появление события , то общее число появлений события равно сумме характеристических случайных величин события во всех опытах. При решении многих практических задач пользование таким приемом оказывается очень удобным. С другой стороны, очень часто для вычисления вероятности события оказывается удобно связать это событие с какой-то непрерывной случайной величиной (или системой непрерывных величин). Рис. 2.4.1. Пусть, например, измеряются координаты какого-то объекта О для того, чтобы построить точку М, изображающую этот объект на панораме (развертке) местности. Нас интересует событие , состоящее в том, что ошибка R в положении точки М не превзойдет заданного значения (рис. 2.4.1). Обозначим случайные ошибки в измерении координат объекта. Очевидно, событие равносильно попаданию случайной точки М с координатами в пределы круга радиуса с центром в точке О. Другими словами, для выполнения события случайные величины и должны удовлетворять неравенству . (2.4.1) Вероятность события есть не что иное, как вероятность выполнения неравенства (2.4.1). Эта вероятность может быть определена, если известны свойства случайных величин . Такая органическая связь между событиями и случайными величинами весьма характерна для современной теории вероятностей, которая, где только возможно, переходит от «схемы событий» к «схеме случайных величин». Последняя схема сравнительно с первой представляет собой гораздо более гибкий и универсальный аппарат для решения задач, относящихся к случайным явлениям.
|