<< Предыдущая Оглавление Следующая >>


1.8. Директивы препроцессора

Почти все программы на языке С++ используют специальные команды для компилятора, которые называются директивами. В общем случае директива – это указание компилятору языка С++ выполнить то или иное действие в момент компиляции программы. Существует строго определенный набор возможных директив, который включает в себя следующие определения:

#define, #elif, #else, #endif, #if, #ifdef, #ifndef, #include, #undef.

Директива #define используется для задания констант, ключевых слов, операторов и выражений, используемых в программе. Общий синтаксис данной директивы имеет следующий вид:

#define <эидентификатор> <этекст>

или

#define <эидентификатор> (<эсписок параметров>) <этекст>

Следует заметить, что символ ‘;’ после директив не ставится. Приведем примеры вариантов использования директивы #define.

Листинг 1.2. Примеры использования директивы #define.

#include
#define TWO 2
#define FOUR TWO*TWO
#define PX printf(“X равно %d.\n”, x)
#define FMT «X равно %d.\n»
#define SQUARE(X) X*X
int main()
{
int x = TWO;
PX;
x = FOUR;
printf(FMT, x);
x = SQUARE(3);
PX;

return 0;
}

После выполнения этой программы на экране монитора появится три строки:

X равно 2.
X равно 4.
X равно 9.

Директива #undef отменяет определение, введенное ранее директивой #define. Предположим, что на каком-либо участке программы нужно отменить определение константы FOUR. Это достигается следующей командой:

#undef FOUR

Интересной особенностью данной директивы является возможность переопределения значения ранее введенной константы. Действительно, повторное использование директивы #define для ранее введенной константы FOUR невозможно, т.к. это приведет к сообщению об ошибке в момент компиляции программы. Но если отменить определение константы FOUR с помощью директивы #undef, то появляется возможность повторного использования директивы #define для константы FOUR.

Для того чтобы иметь возможность выполнять условную компиляцию, используется группа директив #if, #ifdef, #ifndef, #elif, #else и #endif. Приведенная ниже программа выполняет подключение библиотек в зависимости от установленных констант.

#if defined(GRAPH)
#include //подключение графической библиотеки
#elif defined(TEXT)
#include //подключение текстовой библиотеки
#else
#include //подключение библиотеки ввода-вывода
#endif

Данная программа работает следующим образом. Если ранее была задана константа с именем GRAPH через директиву #define, то будет подключена графическая библиотека с помощью директивы #include. Если идентификатор GRAPH не определен, но имеется определение TEXT, то будет использоваться библиотека текстового ввода/вывода. Иначе, при отсутствии каких-либо определений, подключается библиотека ввода/вывода. Вместо словосочетания #if defined часто используют сокращенные обозначения #ifdef и #ifndef и выше приведенную программу можно переписать в виде:

#ifdef GRAPH
#include //подключение графической библиотеки
#ifdef TEXT
#include //подключение текстовой библиотеки
#else
#include //подключение библиотеки ввода-вывода
#endif

Отличие директивы #if от директив #ifdef и #ifndef заключается в возможности проверки более разнообразных условий, а не только существует или нет какие-либо константы. Например, с помощью директивы #if можно проводить такую проверку:

#if SIZE == 1
#include // подключение математической библиотеки
#elif SIZE > 1
#include // подключение библиотеки обработки массивов
#endif

В приведенном примере подключается либо математическая библиотека, либо библиотека обработки массивов, в зависимости от значения константы SIZE.

Данные директивы иногда используются для выделения нужных блоков программы, которые требуется использовать в той или иной программной реализации. Следующий пример демонстрирует работу такого программного кода.

Листинг 1.3. Пример компиляции отдельных блоков программы.

#include
#define SQUARE
int main()
{
int s = 0;
int length = 10;
int width = 5;

#ifdef SQUARE
s=length*width;
#else
s=2*(length+width);
#endif

return 0;
}

В данном примере происходит вычисление либо площади прямоугольника, либо его периметра, в зависимости от того определено или нет значение SQUARE. По умолчанию программа вычисляет площадь прямоугольника, но если убрать строку #define SQUARE, то программа станет вычислять его периметр.

Используемая в приведенных примерах директива #include позволяет добавлять в программу ранее написанные программы и сохраненные в виде файлов. Например, строка

#include < stdio.h >

указывает препроцессору добавить содержимое файла stdio.h вместо приведенной строки. Это дает большую гибкость, легкость программирования и наглядность создаваемого текста программы. Есть две разновидности директивы #include:

#include < stdio.h > - имя файла в угловых скобках

и

#include «mylib.h» - имя файла в кавычках

Угловые скобки сообщают препроцессору о том, что необходимо искать файл (в данном случае stdio.h) в одном или нескольких стандартных системных каталогах. Кавычки свидетельствуют о том, что препроцессору необходимо сначала выполнить поиск файла в текущем каталоге, т.е. в том, где находится файл создаваемой программы, а уже затем – искать в стандартных каталогах.

Видео по теме

С++ с нуля: урок 1 - переменные, оператор присваивания

С++ с нуля: урок 2 - арифметические операции

С++ с нуля: урок 3 - директивы препроцессора

С++ с нуля, урок 4: условные операторы if и switch

С++ с нуля: урок 5 - операторы циклов while, for и do while

С++ с нуля: урок 6 - массивы, метод всплывающего пузырька

С++ с нуля: урок 7 - строки и функции работы с ними

С++ с нуля: урок 8 - функции: прототипы, перегрузка, рекурсия

С++ с нуля: урок 9 - области видимости переменных

С++ с нуля: урок 10 - битовые операции И, ИЛИ, НЕ, XOR

С++ с нуля: урок 11 - структуры

С++ с нуля: урок 12 - объединения, перечисления, typedef

С++ с нуля: урок 13 - указатели и ссылки, выделение памяти

С++ с нуля: урок 14 (часть 1) - функции работы с файлами

С++ с нуля: урок 14 (часть 2) - функции работы с файлами

С++ с нуля: урок 15 - стек, теория и практика

С++ с нуля: урок 16 - связные списки, теория и практика

С++ с нуля: урок 17 - бинарное дерево, теория и практика



<< Предыдущая Оглавление Следующая >>