ЕГЭ и ОГЭ
Хочу знать
Читать в оригинале

<< Предыдущая Оглавление Следующая >>


§ 3. Кинетическая энергия

Чтобы рассказать о другом виде энергии, рассмотрим маятник (фиг. 4.7). Отведем его в сторону и затем отпустим. Он начнет качаться взад и вперед. Двигаясь от края к середине, он теряет высоту. Куда же девается потенциальная энергия? Когда он опускается до самого низа, энергия тяготения пропадает, однако он вновь взбирается вверх. Выходит, что энергия тяготения должна превращаться в другую форму. Ясно, что способность взбираться наверх остается у маятника благодаря тому, что он движется, значит, в наинизшей точке качания энергия тяготения переходит в другой вид энергии.

Мы должны получить формулу для энергии движения. Вспоминая наши рассуждения о необратимых машинах, мы легко поймем, что, двигаясь мимо наинизшей точки, маятник должен обладать некоторым количеством энергии, которая позволит ему подняться на определенную высоту, и при этом независимо от механизма подъема или пути подъема. Возникает формула, выражающая равноценность обоих видов энергии, подобная топ, которую писала мама, подсчитывая кубики. Получается другая форма представления энергии. Легко понять, какой она должна быть. Кинетическая энергия внизу равна весу, умноженному на высоту, на которую этот вес может подняться из-за своей скорости: .

Фигура 4.7. Маятник

Нам нужна формула, предсказывающая высоту подъема по быстроте движения тела. Если мы толкнем что-нибудь с определенной скоростью, скажем, прямо вверх, то это тело достигнет определенной высоты; мы не знаем пока, какова эта высота, но нам ясно, что она зависит от скорости и что она войдет в нужную нам формулу. Значит, чтобы найти формулу для кинетической энергии тела, движущегося со скоростью , нужно вычислить высоту, до которой она может добраться, в умножить на тяжесть тела. В одной из следующих глав мы убедимся, что получается

.                                                                                      (4.6)

Конечно, тот факт, что движение обладает энергией, никак не связан с полем тяготения, в котором находится тело. Неважно, откуда явилось движение. Это общая формула для любых скоростей. Кстати, и (4.3) и (4.6) — формулы приближенные; первая становится неправильной на больших высотах (настолько больших, что тяжесть тела ослабляется), а вторая — на больших скоростях (настолько больших, что требуются релятивистские поправки). Однако, когда мы вводим точные формулы для энергии, закон сохранения энергии опять соблюдается.

 



<< Предыдущая Оглавление Следующая >>