Читать в оригинале

<< ПредыдущаяОглавлениеСледующая >>


§ 5. Псевдосилы

Очередной тип сил, который нам предстоит рассмотреть, — это псевдосилы.

В гл. 11 мы обсудили взаимоотношение двух молодых людей, Джо и Мика, обладателей различных систем координат. Пусть положение частицы по измерениям Мика есть , а Джо дает для нее ; тогда связь между ними такова:

где  показывает, насколько сместилась система Джо относительно системы Мика. Пусть у Мика в системе выполняются законы движения. Как они выглядят для Джо? Сперва мы обнаружим, что

Раньше мы считали  постоянной и убедились, что законы движения при этом не меняются, так как ; в конечном счете в обеих системах все законы физики одинаковы. Но пусть  где  — постоянная скорость движения по прямой. Тогда  непостоянна и  — не нуль, а , т. е. константа. Но ускорение  такое же, как , потому что . Этим доказывается закон, использованный в гл. 10, а именно: когда мы движемся по прямой с постоянной скоростью, все законы физики выглядят так, как если бы мы стояли. Это преобразование Галилея. А теперь мы хотим рассмотреть случай поинтереснее, когда  зависит от времени еще сложнее, например . Тогда , а , т. е. ускорение постоянно; можно рассмотреть также случай, когда ускорение само оказывается функцией времени. Это значит, что хотя закон силы с точки зрения Джо выглядит как

но закон силы, по мнению Мика, иной:

Иначе говоря, поскольку система координат Мика ускоряется по отношению к системе Джо, появляется добавочный член . Чтобы работать с законами Ньютона, Мик обязан подправить силы, ввести в них этот член. Другими словами, появляется кажущаяся, мистическая, новая сила неведомого происхождения; она возникает, конечно, из-за того, что у Мика координатная система неправильна. Это — пример псевдосилы; с другими примерами можно встретиться, если система координат вращается.

Примером псевдо- (как бы-, вроде-) силы является хорошо известная «центробежная сила». Наблюдатель во вращающейся системе координат (во вращающемся ящике) обнаружит таинственные силы, не вызываемые ни одним из известных источников сил; они отбрасывают предметы к стенке ящика. А объясняются они просто тем, что у наблюдателя нет ньютоновой системы  координат — простейшей из всех.

Псевдосилы обнаруживаются на любопытном опыте, состоящем в том, что мы толкаем с ускорением кувшин с водой по столу. Тяжесть действует на воду вниз, но из-за горизонтального ускорения есть еще и псевдосила в горизонтальном направлении, назад по отношению к ускорению. Сумма силы тяжести и псевдосилы образует угол с вертикалью, во время ускорения поверхность воды перпендикулярна к этой сумме сил, т. е. наклонена под углом к столу, и вода приподнята к задней стенке кувшина. Когда мы перестаем толкать кувшин, когда он замедляется вследствие трения, псевдосила меняет свое направление и вода приливает к передней стенке кувшина (фиг. 12.4).

Фигура 12.4. Иллюстрация к псевдосилам

Очень важным свойством псевдосил следует считать то, что они всегда пропорциональны массам; то же справедливо и для тяжести. Существует поэтому возможность, что тяжесть — это тоже псевдосила. Не может ли статься, что тяготение вызывается отсутствием правильной системы координат? Ведь мы всегда можем получить силу, пропорциональную массе, стоит только представить, что тело ускоряется. Например, человек, помещенный в ящик, который стоит па земле, обнаруживает, что его что-то прижимает к полу с силой, пропорциональной его массе. Если бы земли не было вовсе, а ящик все еще покоился, то человек плавал бы в пространстве. С другой стороны, если бы опять не было земли, а ящик кто-то тащил бы вверх с ускорением , то человек в ящике, анализируя физику этого явления, обнаружил бы псевдосилу, прижимающую его к полу точно так же, как это делает тяжесть.

Эйнштейн выдвинул знаменитую гипотезу, что ускорение вызывает имитацию (подобие) тяготения, что силы ускорения (псевдосилы) нельзя отличить от сил тяготения; нельзя сказать, какая часть данной силы — тяжесть, а  какая — псевдосила.

Казалось бы, ничто не мешает считать тяжесть псевдосилой, говорить, что нас прижимает вниз оттого, что нас ускоряет вверх; но как быть с жителями Новой Зеландии, на другой стороне Земли — их-то куда ускоряет? Эйнштейн понял, что тяготение можно считать псевдосилой одновременно только в одной точке; его рассуждения привели к предположению, что геометрия мира сложнее обычной геометрии Евклида. Наше обсуждение вопроса чисто качественное и не претендует ни на что, кроме общей идеи.

Чтобы пояснить в общих чертах, как тяготение может быть результатом действия псевдосил, мы приведем чисто геометрический пример, ничего общего не имеющий с истинным положением вещей. Предположим, что мы с нами обитаем в двумерном мире и ничего о третьем измерении не знаем. Мы бы считали, что живем на плоскости, а на самом деле, предположим, жили бы на шаре; пускай теперь мы бросили предмет вдоль нашей поверхности, не действуя больше на него никакими силами. Как бы он двигался? Нам казалось бы, что он движется по прямой линии, по поскольку третьего измерения нет и он должен был бы оставаться на поверхности шара, то он двигался бы по кратчайшему расстоянию на сфере, т. е. по окружности большого круга. Бросим точно так же другой предмет, но в ином направлении; он направится тоже по дуге большого круга. Мы думаем, что находимся на плоскости, и надеемся поэтому, что расстояние между двумя предметами будет расти линейно с течением времени. Но тщательные наблюдения вдруг обнаружат, что на достаточно большом расстоянии предметы снова начнут сближаться, как если бы они притягивали друг друга. Но они не притягиваются один к другому; все дело в геометрии, это с нею происходит что-то «чудное». Хотя эта картинка и не касается геометрии Евклида (не показывает нам, что в ней есть «чудного»), но она показывает, что, заметно исказив геометрию, можно все тяготение отнести за счет псевдосилы. В этом и состоит общая идея теории тяготения Эйнштейна.

 



<< ПредыдущаяОглавлениеСледующая >>