Читать в оригинале

<< Предыдущая Оглавление Следующая >>


§ 2. Преобразование Лоренца

Когда стало ясно, что с уравнениями физики не все ладится, первым долгом подозрение пало на уравнения электродинамики Максвелла. Они только-только были написаны, им было всего 20 лет от роду; казалось почти естественным, что они неверны. Их принялись переписывать, видоизменять и подгонять к тому, чтобы оказался выполненным принцип относительности в галилеевой форме (15.2). При этом в уравнениях электродинамики появились новые члены; они предсказывали новые электрические явления, но эксперимент никаких таких явлений не обнаружил, и пришлось отказаться от попыток изменить уравнения Максвелла. Постепенно всем становилось ясно, что максвелловы законы электродинамики абсолютно правильны, а загвоздка в чем-то другом.

Между тем Лоренц заметил одно замечательно любопытное явление: когда он делал в уравнениях Максвелла подстановку

,                    (15.3а)

,                        (15.3б)

,                         (15.3в)

,                     (15.3г)

то форма уравнений после подстановки не менялась! Уравнения (15.3) теперь называют преобразованием Лоренца. А Эйнштейн, следуя мысли, впервые высказанной Пуанкаре, предположил, что все физические законы не должны меняться от преобразований Лоренца. Иными словами, надо менять не законы электродинамики, а законы механики. Но как же изменить законы Ньютона, чтобы они при преобразованиях Лоренца не менялись? Когда такая цель поставлена, то остается только переписать уравнения Ньютона так, чтобы выполнялись поставленные условия. Как оказалось, единственное, что нужно от них потребовать, - это, чтоб масса  в уравнениях Ньютона приобрела вид (15.1). Стоит внести это изменение, и наступает полная гармония между уравнениями Ньютона и Максвелла. Если вы теперь, желая согласовать измерения, проведенные Маком и Джо, используете преобразования Лоренца, то вы ни за что не узнаете, кто из них движется, ибо форма всех уравнений в обеих системах координат будет одной и той же!

Интересно понять, что означает эта замена старых преобразований координат и времени на новые. Старые (галилеевы) кажутся очевидными, новые (лоренцевы) выглядят необычно. Как же это может быть, с логической и с экспериментальной точек зрения, что справедливы не старые преобразования, а новые? Чтобы разобраться в этом, мало изучить законы механики, надо (как это и сделал Эйнштейн) проанализировать и наши представления о пространстве и времени, иначе этих преобразований не поймешь. В течение некоторого времени мы будем изучать эти представления и следствия из них. Покамест же стоит отметить, что такой анализ оказывается вполне оправданным - его результаты согласуются с данными опыта.

 



<< Предыдущая Оглавление Следующая >>