§ 7. ЧетырехвекторыЧто еще можно обнаружить в преобразованиях Лоренца? Любопытно, что в них преобразование и по форме похоже на преобразование и , изученное нами в гл. 11, когда мы говорили о вращении координат. Тогда мы получили (15.8) т. е. новое перемешивает старые и , а тоже их перемешивает. Подобным же образом в преобразовании Лоренца новое есть смесь старых и , а новое - смесь и . Значит, преобразование Лоренца похоже на вращение, но «вращение» в пространстве и времени. Это весьма странное понятие. Проверить аналогию с вращением можно, вычислив величину . (15.9) В этом уравнении три первых члена в каждой стороне представляют собой в трехмерной геометрии квадрат расстояния между точкой и началом координат (сферу). Он не меняется (остается инвариантным), несмотря на вращение осей координат. Аналогично, уравнение (15.9) свидетельствует о том, что существует определенная комбинация координат и времени, которая остается инвариантной при преобразовании Лоренца. Значит, имеется полная аналогия с вращением; аналогия эта такого рода, что векторы, т. е. величины, составленные из «компонент», преобразуемых так же, как и координаты, оказываются полезными и в теории относительности. Итак, мы расширим понятие вектора. Пока он у нас мог иметь только пространственные компоненты. Теперь включим в это понятие и временную компоненту, т. е. мы ожидаем, что существуют векторы с четырьмя компонентами: три из них похожи на компоненты обычного вектора, а к ним привязана четвертая - аналог времени. В следующих главах мы проанализируем это понятие. Мы увидим, что если идеи этого параграфа приложить к импульсу, то преобразование даст три пространственные составляющие, подобные обычным компонентам импульса, и четвертую компоненту - временную часть (которая есть не что иное, как энергия).
|