Читать в оригинале

<< Предыдущая Оглавление Следующая >>


§ 4.  Интерференции

Возьмем теперь два источника, расположенных рядом, на расстоянии в несколько сантиметров один от другого (фиг. 28.3). Если оба источника присоединены к одному генератору и заряды в них движутся вверх и вниз одинаковым образом, то по принципу суперпозиции действия обоих источников складываются; электрическое поле равно сумме двух слагаемых и оказывается в два раза больше, чем в предыдущем случае.

Фигура 28.3. Интерференция полей от двух источников

Здесь появляется интересная возможность. Пусть заряды в  и  ускоряются вверх и вниз, но в  движение зарядов запаздывает и сдвинуто по фазе на 180º. Тогда в один и тот же момент времени поле, создаваемое , будет иметь одно направление, а поле, создаваемое ,— противоположное, и, следовательно, в точке 1 никакого эффекта не возникнет. Относительную фазу колебаний легко создать с помощью трубки, передающей сигнал в . При изменении длины трубки меняется и время прохождения сигнала до , а следовательно, меняется разность фаз колебаний. Подобрав нужную длину трубки, мы можем добиться такого положения, что сигнал исчезнет, несмотря на движение зарядов в источниках  и . Излучение каждого источника в отдельности легко установить, выключая один из них; тогда действие второго обнаруживается сразу. Таким образом, если все сделать аккуратно, оба источника в совокупности могут дать нулевой эффект.

Теперь интересно убедиться, что сложение двух полей фактически есть векторное сложение. Мы только что рассмотрели случай движения зарядов вверх и вниз; обратимся теперь к примеру двух непараллельных движений. Прежде всего установим для  и  одинаковые фазы, т. е. пусть заряды движутся одинаково. Далее повернем  на угол , как показано на фиг. 28.4. В точке 1 произойдет сложение двух полей, одного от горизонтального источника, а другого — от вертикального. Полное электрическое поле представится векторной суммой двух сигналов, находящихся в одной и той же фазе; оба сигнала одновременно проходят и через максимум и через нуль. Суммарное поле должно быть равно сигналу R, повернутому на 45°. Максимальный звук будет получен, если повернуть детектор  на 45°, а не в вертикальном направлении. При повороте на прямой угол по отношению к указанному направлению звуковой сигнал, как легко проверить, должен быть равен нулю. И действительно, именно это и наблюдается!

Фигура 28.4. Иллюстрация векторного характера сложения полей.

А как быть с запаздыванием? Как показать, что сигнал действительно запаздывает? Конечно, прибегнув к большому числу сложных устройств, можно измерить время прибытия сигнала, но есть другой, очень простой способ. Обратимся снова к фиг. 28.3 и предположим, что  и  находятся в одной фазе. Оба источника колеблются одинаково и создают в точке 1 равные поля. Но вот мы перешли в точку 2, которая находится ближе к , чем к . Тогда, поскольку запаздывание определяется величиной , при разных запаздываниях сигналы будут приходить с разными фазами. Следовательно, должна существовать такая точка, для которой расстояния от  до  и  различаются на такую величину , когда сигналы будут погашаться.

В этом случае  должна быть равна расстоянию, проходимому светом за половину периода колебаний генератора. Сдвинемся еще дальше и найдем точку, где разность расстояний соответствует полному периоду колебаний, т. е. сигнал от первой антенны достигает точки 3 с запаздыванием по сравнению с сигналом от второй антенны, и это запаздывание в точности равно одному периоду колебаний. Тогда оба электрических поля снова находятся в одной фазе и сигнал в точке 3 опять становится сильным.

На этом закончим описание экспериментальной проверки важнейших следствий формулы (28.6). Мы, конечно, не касались вопроса об электрических полях, спадающих по закону , и не учитывали, что магнитное поле сопутствует электрическому при распространении сигнала. Для этого требуется довольно сложная техника вычислений, и вряд ли это что-либо добавит к нашему пониманию вопроса. Во всяком случае, мы установили свойства, наиболее важные для последующих приложений, а к другим свойствам электромагнитных волн мы еще вернемся.

 



<< Предыдущая Оглавление Следующая >>