Читать в оригинале

<< ПредыдущаяОглавлениеСледующая >>


§ 3. Разрешающая способность дифракционной решетки

Теперь мы способны понять еще ряд интересных явлений. Например, попробуем использовать решетку для определения длины волны света. На экране изображение щели развертывается в целый спектр линий, поэтому с помощью дифракционной решетки можно разделить свет по составляющим его длинам волн.

Возникает интересный вопрос: предположим, что имеются два источника с несколько разными частотами излучения или несколько разными длинами волн; насколько близкими должны быть эти частоты, чтобы по дифракционной картине нельзя было отделить одну частоту от другой? Красные и синие линии четко различаются. А вот если один луч красный, а другой чуть-чуть покраснее, самую малость. Насколько близки они должны быть? Ответ дается величиной, которая называется разрешающей способностью решетки. Ниже мы используем один из способов ее определения.

Предположим, что удалось найти дифракционный максимум для лучей определенного цвета, расположенный под некоторым углом. Если мы изменим длину волны, то и значение фазы  будет иным и максимум, разумеется, возникнет при каком-то другом угле. Именно поэтому красные и синие полосы на экране разделяются. Насколько должны отличаться углы, чтобы мы смогли различить два разных максимума? Если верхушки максимумов совпадают, мы, конечно, не сможем различить их один от другого. Если же максимумы достаточно далеки друг от друга, то на картине распределения света возникают два горба.

Фигура 30.6. Иллюстрация критерия Рэлея.

Максимум одного распределения совпадает с минимумом другого.

Чтобы заметить, когда начинает вырисовываться двойной горб, лучше всего воспользоваться простым правилом, называемым обычно правилом (или критерием) Рэлея (фиг. 30.6). По этому правилу первый минимум на дифракционной картине для одной длины волны должен совпадать с максимумом для другой длины волны. Теперь уже нетрудно вычислить разность длин волн, когда один минимум в точности «садится» на максимум другого пучка. Лучше всего для этого воспользоваться геометрическим способом.

Чтобы возник максимум при длине волны , расстояние  (см. фиг. 30.3) должно быть равно , а чтобы возник максимум порядка , расстояние  должно быть равно . Другими словами,  и , равное , есть , умноженная на , или соответственно . Если мы хотим, чтобы под тем же углом для другого луча с длиной волны  появился минимум, расстояние  должно превышать  ровно на одну длину волны , т. е. . Отсюда, полагая , получаем

.                                 (30.9)

Отношение  называется разрешающей способностью дифракционной решетки; она равна, как видно из формулы, полному числу линий в решетке, умноженному на порядок максимума луча. Легко убедиться, что эта формула эквивалентна следующему утверждению: разность частот должна быть равна обратной величине разности времен прохождения для самых крайних интерферирующих лучей

.

Полезно запомнить именно эту общую формулу, потому что она применима не только для решеток, но и для любых устройств, тогда как вывод формулы (30.9) связан со свойствами дифракционных решеток.

 



<< ПредыдущаяОглавлениеСледующая >>