Читать в оригинале

<< ПредыдущаяОглавлениеСледующая >>


§ 8. Принцип неопределенности

Вот как сам Гейзенберг сформулировал свой принцип неопределенности: если вы изучаете какое-то тело и вы в состоянии определить компоненту импульса тела с неопределенностью , то вы не можете одновременно определить координату  тела с точностью, большей чем .

Произведение неопределенностей в положении тела и в его импульсе в любой момент должно быть больше постоянной Планка. Это частный случай принципа неопределенности. Более общая формулировка была высказана в предыдущем параграфе: нельзя никаким образом устроить прибор, определяющий, какое из двух взаимно исключающих событий осуществилось, без того, чтобы в то же время не разрушилась интерференционная картина.

Сейчас на одном частном случае мы покажем, что, если не иметь в своем распоряжении какого-нибудь принципа, наподобие принципа Гейзенберга, трудностей избежать никак нельзя. Представим себе такое видоизменение опыта, показанного на фиг. 37.3, в котором стенкой с отверстиями служит пластинка на катках, способная откатываться вверх и вниз (в направлении), как показано на фиг. 37.6. Внимательно следя за движением пластинки, можно попытаться узнать, сквозь какое отверстие прошел электрон. Представьте, что случится, когда детектор поставят в точку . Когда электрон проходит через отверстие , он должен отклониться вниз от пластинки, чтобы попасть в детектор. Так как изменилась вертикальная компонента импульса, то к пластинке приложится сила отдачи — тот же импульс, но в противоположном направлении. Пластинка испытает толчок вверх. А когда электрон пройдет сквозь нижнее отверстие, пластинка почувствует толчок вниз. И при любом другом положении детектора импульс, получаемый пластинкой, будет тоже неодинаков: когда электрон проскакивает через верхнюю дырку — один, когда сквозь нижнюю — другой. И, значит, не трогая электрон, ни капельки не возмущая его, а лишь следя за пластинкой, можно узнать, каким путем воспользовался электрон.

Фигура 37.6. Опыт в котором измеряется отдача стенки.

Чтобы определить это, нам нужно только знать, каков был импульс экрана до прихода электрона. Тогда, измерив импульс экрана после пролета электрона, мы сразу увидим, насколько он переменился. Но вспомните, что, согласно принципу неопределенности, при этом уже невозможно будет знать положение пластинки с произвольной точностью. Однако если мы не знаем точно, где она находится, как же мы узнаем, где эти два отверстия? Для каждого нового электрона, проникающего сквозь пластинку, отверстия окажутся на новом месте. А это значит, что центр нашей интерференционной картины для каждого электрона тоже будет на новом месте. Интерференционные полосы (колебания вероятности) смажутся. В следующей главе мы докажем численно, что при измерении импульса пластинки (достаточно точном для того, чтобы из измерений отдачи узнать номер отверстия) неопределенности в координате  пластинки как раз хватит на то, чтобы сдвинуть возникающую в детекторе картину вверх или вниз на расстояние от максимума до ближайшего минимума. От этих случайных сдвигов картина интерференции размажется и от нее в конце концов не останется и следа.

Принцип неопределенности «спасает» квантовую механику. Гейзенберг понимал, что если б можно было с большей точностью измерять и положение, и импульс одновременно, то квантовая механика рухнула бы. Вот он и допустил, что это невозможно. Тогда люди принялись придумывать способы, как все-таки это сделать. Но никому не удалось представить себе способ, как измерять положение и импульс чего угодно — экрана, электрона, биллиардного шара, любого предмета — с большей точностью. И квантовая механика продолжает вести свой рискованный, впрочем, вполне четко очерченный образ жизни.

 



<< ПредыдущаяОглавлениеСледующая >>