§ 3. Дифракция на кристаллеТеперь рассмотрим отражение волн вещества от кристалла. Кристалл — это твердое тело, состоящее из множества одинаковых атомов, расположенных стройными рядами. Как можно расположить этот строй атомов, чтобы, отражая в данном направлении данный пучок света (рентгеновских лучей), электронов, нейтронов, чего угодно, получить сильный максимум? Чтобы испытать сильное отражение, лучи, рассеянные от всех атомов, должны быть в фазе друг с другом. Не может быть так, чтобы точно половина волн была в фазе, а половина — в противофазе, тогда все волны исчезнут. Нужно, стало быть, найти поверхности постоянной фазы; это, как мы уже объясняли раньше, плоскости, образующие равный угол с начальным и конечным направлениями (фиг. 38.4). Фигура 38.4. Рассеяние волн плоскостями кристалла. Если мы рассмотрим две параллельные плоскости, как показано на фиг. 38.4, то волны, рассеянные на них, окажутся в фазе только тогда, когда разность расстояний, пройденных фронтом волны, будет равна целому числу длин воля. Эта разность, как легко видеть, равна , где — расстояние между плоскостями. Итак, условие когерентного отражения имеет вид (38.9) Если, скажем, кристалл таков, что атомы в нем укладываются на плоскостях, удовлетворяющих условию (38.9) с , то будет наблюдаться сильное отражение. Если, с другой стороны, существуют другие атомы той же природы (и расположенные с той же плотностью) как раз посередине между слоями, то на этих промежуточных плоскостях произойдет рассеяние равной силы; оно интерферирует с первым и погасит его. Поэтому в выражении (38.9) должно означать расстояние между примыкающими плоскостями; нельзя взять две плоскости, разделенные пятью слоями, и применить к ним эту формулу! Интересно, что настоящие кристаллы обычно не столь просты, — это не одинаковые атомы, повторяющиеся по определенному закону. Они скорее похожи, если прибегнуть к двумерной аналогии, на обои, на которых повторяется один и тот же сложный узор. Для атомов «узор» — это некоторая их расстановка, куда может входить довольно большое число атомов; скажем, для углекислого кальция — атомов кальция, углерода и трех атомов кислорода. Важно не то, каков рисунок, а то, что он повторяется. Этот основной рисунок называется ячейкой, а способ повторения определяет тип решетки; тип решетки можно сразу определить, взглянув на отражения и рассмотрев их симметрию. Другими словами, от типа решетки зависит, где не будет отражения (лучей от кристалла), но чтобы узнать, что стоит в каждой ячейке, надо учесть и интенсивность рассеяния по тем или иным направлениям. Направления рассеяния зависят от типа решетки, а сила рассеяния определяется тем, что находится внутри каждой ячейки; этим способом и было изучено строение кристаллов. Две фотографии дифракции рентгеновских лучей даны на фиг. 38.5 и 38.6. Фигура 38.5. Дифракция рентгеновских лучей на кристаллах каменной соли. Фигура 38.6. Дифракция рентгеновских лучей на миоглобине. Занятная вещь получается с рассеянием, когда промежутки между ближайшими плоскостями меньше . В этом случае уравнение (38.9) вообще не имеет решений ни для одного . Выходит, когда больше двойного промежутка между примыкающими плоскостями, то никаких боковых дифракционных пятнышек нет и свет (и не только свет, а все, что хотите) прямо проходит через вещество. Проходит, не отражаясь, не рассеиваясь, не теряясь. В частности, свет (у него много больше этих промежутков) проходит, не давая никакой картины отражений от кристаллических плоскостей. Интересные следствия этого явления наблюдаются в урановых реакторах — источниках нейтронов (нейтроны — это, уж бесспорно, частицы, спросите у кого угодно!). Если пустить эти самые частицы-нейтроны через длинный блок графита, то они начнут рассеиваться и с трудом будут протискиваться в глубь блока (фиг. 38.7). Рассеиваются они из-за того, что отскакивают от атомов. Но строго говоря, согласно волновой теории, все обстоит как раз наоборот — они отскакивают от атомов из-за дифракции от кристаллических плоскостей. Оказывается, что если взять длинный стержень графита, то у всех нейтронов, выходящих из его дальнего конца, окажется большая длина волны! Если нанести на график интенсивность нейтронов как функцию длины волны, то на нем изобразятся только длины волн выше некоторого минимума (фиг. 38.8). Значит, таким путем можно получить очень медленные нейтроны. Проникают сквозь графит только самые медленные нейтроны, они не дифрагируют, не рассеиваются на кристаллических плоскостях графита, а спокойно проходят, как свет через стекло. И нет никакого рассеяния по сторонам. Существует и множество других доказательств реальности нейтронных волн и волн других частиц. Фигура 38.7. Диффузия нейтронов из котла сквозь графитовый блок Фигура 38.8. Интенсивность нейтронов, выходящих из стержня графита, как функция длины волны.
|