Читать в оригинале

<< ПредыдущаяОглавление


§ 6. Немного философии

Поговорим еще немного о философии квантовой механики. Как и всегда, здесь есть две стороны: философское содержание физики и его экстраполяция на другие области знаний. Когда философские идеи, связанные с наукой, переносятся на другие области, они обычно при этом искажаются до неузнаваемости. Поэтому мы ограничим свои замечания, насколько это возможно, только физикой.

Прежде всего начнем с самого интересного предмета — с идеи принципа неопределенности: наблюдение воздействует на явление. Хоть и всегда было известно, что, наблюдая явление, мы воздействуем на него, но здесь суть-то в том, что этим воздействием нельзя пренебречь, нельзя его свести до нуля, нельзя переделкой прибора произвольно уменьшить это влияние. Наблюдая явление, нельзя хотя бы слегка не нарушить его ход, и без учета этого нарушения теория не может стать последовательной. И в доквантовой физике наблюдатель иногда был важен, но лишь в довольно тривиальном смысле. Рассматривался, скажем, такой вопрос: дерево падает в лесу, в котором нет никого, кто мог бы услышать это; вызовет ли падение шум? И следовал ответ: настоящее дерево, падая в настоящем лесу, бесспорно, шум вызовет, даже если никого поблизости нот. Пусть никто падения слышать не мог, все равно останутся другие следы — кое-где осыплются листья, а на некоторых листочках останутся едва заметные царапинки от колючек, которые можно будет объяснить лишь тем, что листва дрожала. Так что следует допустить, что в некотором смысле звук и впрямь существовал. «Но было ли ощущение звука?» — можем мы спросить. Нет, для ощущения, видимо, нужно и сознание. А есть ли сознание у муравьев, да и водятся ли они в этом лесу и сознают ли что-либо деревья — вопрос темный. Поэтому бросим эту задачу.

С тех пор как родилась квантовая механика, стали подчеркивать и другое положение: не надо говорить о вещах, которые невозможно измерить. (Кстати, и теория относительности говорила об этом же.) Пока не определено, как измерять величину, ей нет места в теории. А поскольку точное значение импульса локализованной (находящейся в каком-то месте) частицы не может быть определено при помощи измерения, значит, импульсу нечего делать в теории.

Так вот, если вы думаете, что классическая теория потому и погибла, вы ошибаетесь. Было бы легкомысленно сделать такой вывод. Невозможность точного измерения координаты и одновременно импульса не означает априори, что нельзя о них говорить, а означает только, что говорить о них нет необходимости. На самом деле в науках бывает иначе: идея или понятие, которые невозможно прямо связать с опытом или замерить, могут быть полезными, а могут быть бесполезными. О них можно только сказать, что они не обязаны присутствовать в теории. Пусть, например, мы сравниваем классическую теорию мира с квантовой теорией, а из эксперимента следует, что координата и импульс могут измеряться лишь неточно. Мы спрашиваем себя, имеет ли смысл понятие точного положения частицы или точного ее импульса. Классическая теория отвечает «да», а квантовая — «нет». Но это само по себе не означает, что классическая физика ошибается.

Когда была открыта новая, квантовая, механика, приверженцы классической теории, т. е. все физики, кроме Гейзенберга, Шредивгера и Борна, говорили: «Что же хорошего в ней, в вашей теории, раз она не может ответить на простейшие вопросы: каково точное положение частицы? Через какую щель она проскочит? и другие». Ответ Гейзенберга гласил: «Я не обязан отвечать на такие вопросы, ибо вы не можете их задать экспериментально». Иначе говоря, отвечать — означало бы делать то, что делать необязательно. Рассмотрим две теории, (А) и (Б). Теория (А) содержит в себе идею, которую нельзя проверить непосредственно, но которая используется в анализе; теория (Б) этой идеи не содержит. Если их предсказания расходятся, то нельзя утверждать, что теория (Б) ошибочна на том основании, что она не может объяснить идею из теории (А); ведь эта идея как раз из тех вещей, которые нельзя непосредственно проверить.

Ну что ж! Хорошо, конечно, знать, какие из идей экспериментальной проверке не поддаются, но нет необходимости отбрасывать их все. Неверно же, что науку можно создавать только из тех понятий, которые прямо связаны с опытом. Ведь в самой квантовой механике есть и амплитуда волновой функции, и потенциал, и многие другие умственные построения, не поддающиеся прямому измерению. Основа науки — в ее способности предвидеть. Предвидеть — это значит сообщать, что случится в опыте, который никогда прежде не ставился. Как этого можно добиться? Предполагая, что мы независимо от эксперимента знаем, что произойдет, мы экстраполируем опыт, выводим его в область, в которой он не ставился. Мы расширяем свои представления до пределов, в которых они никогда не проверялись. Если этого не сделано — никакого предсказания нет. Поэтому вполне разумно было когда-то физику-классику в счастливом неведении предполагать, что понятие положения, бесспорно имеющее смысл в футболе, имеет какой-то смысл и для электрона. Это была не глупость. Это была разумная процедура. А теперь мы, например, говорим, что закон относительности верен при любых энергиях, а ведь в один прекрасный день явится кто-нибудь и объяснит, насколько мы глупы. Мы не догадаемся, в каком месте мы совершаем «глупость», покуда не «вырастем над собой»; вся проблема сводится к тому, как и когда нам это удастся. Единственный же способ обнаружить, в чем мы ошибаемся, это понять, в чем состоят наши предсказания. Так что без умственных построений не обойтись.

Мы уже делали ряд замечаний о недетерминироваиности квантовой механики, т. е. о том, что она не способна предсказывать, что произойдет в данных физических условиях, как бы аккуратно они ни были на опыте осуществлены. Если атом находится в возбужденном состоянии, собираясь излучить фотон, мы не можем сказать, когда это случится; существует конечная амплитуда вероятности испустить фотон в любой момент, и только эту вероятность мы и можем предвидеть. Мы не можем точно предсказывать будущее. На этой основе и высказываются разного рода глупости о неопределенности всех явлений в мире, возникают вопросы о свободе воли частиц и т. д.

Следует, конечно, подчеркнуть, что и классическая физика была в каком-то смысле недетерминированной. Обычно думают, что недетерминированность, невозможность предсказать будущее — это особенность квантовой механики, и именно с ней связывают возникновение представлений о свободе воли и т. д. Но если бы даже наш мир был классическим, т. е. если бы законы механики были классическими, все равно из этого не следует, что те же или какие-то аналогичные представления не возникли бы. Да, конечно, с точки зрения классики, узнав местоположение и скорость всех частиц в мире (или в сосуде с газом), можно точно предсказать, что будет дальше. В этом смысле классический мир детерминирован. Но представьте теперь, что наша точность ограничена и что мы не знаем точно положение только одного из атомов; знаем, скажем, его с ошибкой в одну миллиардную. Тогда если он столкнется с другим атомом, неопределенность в знании его координат после столкновения возрастет. А следующее столкновение еще сильней увеличит ошибку. Так что если сначала ошибка и была еле заметной, то все равно вскоре она вырастет до огромнейшей неопределенности. Вот вам пример: вода, падая с плотины, брызжет во все стороны. Подойдите поближе, и на ваш нос тоже упадет несколько брызг. Это кажется совершеннейшей случайностью, хотя поведение воды может быть предсказано на основе чисто классических законов. Точное положение всех капель зависит от мельчайших колебаний потока воды перед плотиной. Но как оно зависит? Еле заметные нерегулярности в падении воды усиливаются и приводят к полной случайности движений. Ясно, что мы не можем по-настоящему предвидеть положение капель, если не знаем движения воды абсолютно точно.

Правильнее будет сказать, что для данной точности (сколь угодно большой, но конечной) можно всегда указать такой большой промежуток времени, что для него становится невозможным сделать предсказания. И этот промежуток (в этом вся соль) не так уж велик. Он не равен миллиону лет при точности в одну миллиардную! Время с уменьшением ошибки растет только логарифмически, и оказывается, что за очень и очень малое время вся наша информация теряется. Если точность равна даже одной миллиард-миллиард-миллиардной (ставьте сколько угодно миллиардов, но только когда-нибудь остановитесь!), все равно можно указать промежуток времени, меньший чем время, нужное для того, чтобы произвести измерения с такой огромной точностью, после которого уже невозможно будет предугадывать, что случится! Поэтому нечестно говорить, что уже в видимой свободе и недетерминированности человеческого мышления мы видим доказательства невозможности его изучения в рамках классической «детерминистской» физики и приветствовать квантовую механику как избавительницу нашего духа от «абсолютно механистической» Вселенной. С практической точки зрения «детерминизм» отсутствовал и в классической механике.

 



<< ПредыдущаяОглавление