Читать в оригинале

<< ПредыдущаяОглавлениеСледующая >>


§ 2. Распространение звука

Давайте выведем теперь свойства распространения звука между источником и приемником, основываясь на законах Ньютона, но не учитывая при этом взаимодействия звука с источником и приемником. Обычно мы более подробно останавливались на результате, а не на его выводе. В этой главе мы используем противоположный подход. Главным здесь будет в некотором смысле само получение результата. Метод объяснения новых явлений с помощью старых, законы которых уже известны, представляет собой, пожалуй, величайшее искусство математической физики. Математическая физика решает две проблемы: найти решение заданного уравнения и найти уравнения, описывающие новое явление. То, чем мы будем заниматься, относится как раз ко второй проблеме.

Рассмотрим простейший пример - распространение звука в одномерном пространстве. Для вывода нам сначала необходимо понять, что же в действительности происходит. В основе явления лежит следующий факт: когда тело перемещается в воздухе, возникает возмущение, которое как-то распространяется по воздуху. На вопрос, что это за возмущение, мы можем ответить: это такое движение тела, которое вызывает изменение давления. Конечно, если тело движется медленно, воздух лишь обтекает его, но нас интересует быстрое движение, когда воздух не успевает обойти вокруг тела. При этих условиях воздух в процессе движения сжимается и возникает избыточное давление, толкающее окружающие слои воздуха. Эти слои в свою очередь сжимаются, снова возникает избыточное давление, и вот начинает распространяться волна.

Опишем этот процесс на языке формул. Прежде всего решим, какие нам нужны переменные. В нашей задаче нам нужно знать, насколько переместился воздух, поэтому смещение воздуха в звуковой волне, несомненно, будет первой нашей переменной. Вдобавок хотелось бы знать, как меняется плотность воздуха при смещении. Давление воздуха тоже меняется, и это еще одна интересная переменная. Кроме того, воздух движется с некоторой скоростью, и мы должны уметь определить скорость частиц воздуха. Частицы воздуха имеют еще и ускорение, но, записав все эти переменные, мы сразу же поймем, что и скорость, и ускорение будут нам известны, если известно смещение воздуха как функция времени.

Как уже говорилось, мы рассмотрим волну в одном измерении. Так можно поступить, если мы находимся достаточно далеко от источника и так называемый фронт волны мало отличается от плоскости. На этом примере наше доказательство будет проще, поскольку можно сказать, что смещение  зависит только от  и , а не от  и . Поэтому поведение воздуха описывается функцией .

Насколько полно такое описание? Казалось бы, оно очень не полно, потому что нам не известны подробности движения молекул воздуха. Они движутся во всех направлениях, и этот факт не отражается функцией . С точки зрения кинетической теории, если в одном месте наблюдается большая плотность молекул, а в соседнем меньшая, молекулы будут переходить из области с большей плотностью в область с меньшей плотностью, так чтобы уравнять плотности. Очевидно, что при этом никаких колебаний не происходит и звук не возникает. Для получения звуковой волны нужно, чтобы молекулы, вылетая из области с большей плотностью и давлением, передавали импульс другим молекулам, находящимся в области разрежения. Звук возникает в том случае, если размеры области изменения плотности и давления намного больше расстояния, проходимого молекулами до соударения с другими молекулами. Это расстояние есть длина свободного пробега, и оно должно быть много меньше расстояния между гребнями и впадинами давления. В противном случае молекулы перейдут из гребня во впадину, и волна моментально выровнится.

Мы, естественно, хотим описать поведение газа в масштабе, большем, чем длина свободного пробега, так что свойства газа не будут определяться поведением отдельных молекул. Например, смещение есть смещение центра инерции небольшого объема газа, а давление или плотность относятся к этому же объему. Мы обозначим давление через , а плотность через , причем обе величины будут функциями от  и . Необходимо помнить, что наше описание приближенное и справедливо лишь, когда свойства газа не слишком быстро меняются с расстоянием.

 



<< ПредыдущаяОглавлениеСледующая >>