Читать в оригинале

<< ПредыдущаяОглавлениеСледующая >>


§ 7. Поле заряженного шара

Одной из самых трудных задач, которую пришлось нам решать, когда мы изучали теорию гравитационного притяжения, было доказать, что сила, создаваемая твердым шаром на его поверхности, такая же, как если бы все вещество шара было сконцентрировано в его центре. Много лет Ньютон не решался обнародовать свою теорию тяготения, так как не был уверен в правильности этой теоремы. Мы доказали ее в вып. 1, гл. 13, взяв интеграл для потенциала и вычислив силу тяготения по градиенту. Теперь эту теорему мы можем доказать очень просто. Но на этот раз мы докажем не совсем ее, а сходную теорему для однородно заряженного электричеством шара. (Поскольку законы электростатики и тяготения совпадают, то то же доказательство может быть проведено и для поля тяготения.)

Зададим вопрос: каково электрическое поле  в точке  где-то снаружи сферы, наполненной однородно распределенным зарядом? Так как здесь нет «выделенного» направления, то законно допустить, что  всюду направлено прямо от центра сферы. Рассмотрим воображаемую сферическую поверхность, концентрическую со сферой зарядов и проходящую через точку  (фиг. 4.11). Для этой сферы поток наружу равен

Фигура 4.11. Применение закона Гаусса для определения поля однородно заряженного шара.

1 — распределение заряда ; 2 — гауссова поверхность .

Закон Гаусса утверждает, что этот поток равен суммарному заряду сферы  (деленному на ):

,

или

,                           (4.39)

а это как раз та формула, которая получилась бы для точечного заряда . Мы решили проблему Ньютона проще, без интеграла. Конечно, это кажущаяся простота; вам пришлось затратить какое-то время на то, чтобы разобраться в законе Гаусса, и вы можете думать, что на самом деле время нисколько не сэкономлено. Но когда вам придется часто применять эту теорему, то она практически окупится. Все дело в привычке.

 



<< ПредыдущаяОглавлениеСледующая >>