Читать в оригинале

<< ПредыдущаяОглавлениеСледующая >>


§ 9. Поля проводника

Проводник электричества — это твердое тело, в котором есть много «свободных» электронов. Электроны могут двигаться в веществе свободно, но не могут покидать поверхности. В металле бывает так много свободных электронов, что всякое электрическое поле приводит многие из них в движение. И либо возникший таким образом ток электронов должен непрерывно поддерживать свое существование за счет внешних источников энергии, либо движение электронов прекращается, как только они разрядят источники, вызвавшие поле вначале. В условиях «электростатики» мы не рассматриваем непрерывных источников тока (о них мы будем говорить в магнитостатике), так что электроны движутся только до тех пор, пока не расположатся так, что повсюду внутри проводника создастся нулевое электрическое поле. (Как правило, это происходит в малые доли секунды.) Если бы осталось внутри хоть какое-нибудь поле, оно бы вынудило двигаться еще какие-то электроны; возможно только такое электростатическое решение, когда поле всюду внутри равно нулю.

Теперь рассмотрим внутренность заряженного проводящего тела. (Мы имеем в виду внутреннюю часть самого металла.) Так как металл — проводник, то внутреннее поле должно быть нулем, а значит, и градиент потенциала  равен нулю. Это значит, что  от точки к точке не меняется. Любой проводник — это эквипотенциальная область, и его поверхность — эквипотенциальна. Раз в проводящем материале электрическое поле повсюду равно нулю, то и дивергенция  тоже равна нулю, и по закону Гаусса плотность заряда во внутренней части проводника обращается в нуль.

Но если внутри проводника не может быть зарядов, как же он вообще может быть заряжен? Что мы имеем в виду, когда говорим, что проводник «заряжен»? Где эти заряды? Они находятся на поверхности проводника, где существуют большие силы, не дающие им покинуть ее, так что они не вполне «свободны». Когда мы будем изучать физику твердого тела, мы увидим, что избыточный заряд в любом проводнике находится только в узком слое у поверхности, толщиной в среднем в один-два атома. Для наших нынешних целей достаточно правильно будет говорить, что любой заряд, попавший на (или в) проводник, собирается на его поверхности; внутри проводника никаких зарядов нет.

Мы замечаем также, что электрическое поле возле самой поверхности проводника должно быть нормально к поверхности. Касательной составляющей у него быть не может. Если бы она появилась, электроны двигались бы вдоль поверхности; нет сил, которые способны помешать этому. Это можно выразить и иначе: мы знаем, что линии электрического поля должны всегда быть направлены поперек эквипотенциальной поверхности.

Применяя закон Гаусса, мы можем связать напряженность поля у самой поверхности проводника с локальной плотностью заряда на поверхности. За гауссову поверхность мы примем небольшой цилиндрический стакан, наполовину погруженный в проводник, а наполовину выдвинутый из него (фиг. 5.11). Вклад в общий поток  дает только та часть стакана, которая находится вне проводника. Тогда поле у наружной поверхности проводника равно

Вне проводника:

,                                                                            (5.8)

где  — локальная поверхностная плотность заряда.

Фигура 5.11. Электрическое поле у самой внешней поверхности проводника пропорционально локальной поверхностной плотности заряда.

1 — гауссова поверхность; 2 — локальная плотность поверхностного заряда .

Почему слой зарядов на проводнике создает не такое поле, как слой зарядов сам по себе? Иначе говоря, почему (5.8) вдвое больше (5.3)? Но ведь мы не утверждали, будто в проводнике нет больше никаких «других» зарядов. В действительности для того, чтобы в проводнике  было равно 0, в нем обязательно должны присутствовать какие-то заряды. В непосредственной близости от точки  на поверхности заряды действительно создают поле  как внутри, так и снаружи поверхности. Но все прочие заряды проводника сообща «устраивают заговор», чтобы создать в точке  добавочное поле, равное по величине . Суммарное внутреннее поле обращается в нуль, а наружное удваивается: .

 



<< ПредыдущаяОглавлениеСледующая >>