§ 3. Замечания о векторных уравненияхЗдесь, пожалуй, уместно сделать общее замечание, касающееся векторного анализа. Хотя его теоремы и доказаны в общем виде, однако, приступая к расчетам и анализу какой-либо задачи, следует с толком выбирать направление осей координат. Вспомните, что когда мы вычисляли потенциал диполя, то ось выбиралась не как попало, а мы направили ее до оси диполя. Это намного облегчило нашу задачу. Потом уже уравнения были переписаны в векторной форме и сразу перестали зависеть от выбора системы координат. Теперь стало возможным выбирать какую угодно систему координат, зная, что формула отныне всегда будет справедлива. Вообще нет смысла вводить произвольную систему координат, где оси направлены под каким-то сложным углом, если можно в данной задаче выбрать систему получше, а уже в самом конце выразить результат в виде векторного уравнения. Так что старайтесь использовать то преимущество векторных уравнений, что они не зависят ни от какой системы координат. С другой стороны, если вы хотите подсчитать дивергенцию какого-то вектора, то вместо того, чтобы смотреть Если вы затем вычислите по отдельности
|