§ 9. Точечный заряд у проводящей сферы
А какие еще поверхности, кроме плоскости, имеют простое решение? Самая простая из них — сфера. Попробуем определить поля вокруг металлической сферы с точечным зарядом
вблизи нее (фиг. 6.11). Придется поискать простую физическую задачу, для которой сфера есть эквипотенциальная поверхность. Если мы просмотрим те задачи, которые уже решены, то увидим, что у поля двух неравных точечных зарядов одна из эквипотенциальных поверхностей как раз и есть сфера. Отметим себе это! Если мы как следует подберем положение заряда изображения и нужную его величину, может быть, тогда мы и сможем подогнать эквипотенциальную поверхность к нашей сфере. Это и впрямь может быть сделано, если действовать по следующему рецепту.

Фигура 6.11. Точечный заряд
наводит на заземленной проводящей сфере заряды, которые создают поле, такое же, как у заряда-изображения, помещенного в указанной точке.
Положим, что вы хотите, чтобы эквипотенциальная поверхность была сферой радиуса
с центром, отстоящим от заряда
на расстояние
. Поместите изображение заряда величины
на радиусе, проходящем через заряд на расстоянии
от центра. Потенциал сферы пусть будет нуль.
Математически причина состоит в том, что сфера есть геометрическое место точек, отношение расстояний которых от двух данных точек постоянно. Как следует из фиг. 6.11, потенциал в точке
от зарядов
и
пропорционален сумме

и будет равен нулю во всех точках, для которых
или 
Если мы помещаем
на расстоянии
от центра, то отношение
равно постоянной величине
. Тогда если
, (6.31)
то сфера станет эквипотенциалью. Потенциал ее на самом деле будет равен нулю.
А что, если нам понадобится сфера с ненулевым потенциалом? Ведь он равен нулю только тогда, когда ее суммарный заряд случайно окажется равным
! Конечно, если ее заземлить, то наведенные на ней заряды окажутся в точности такими, как надо. Ну, а если она заизолирована и мы не снабдили ее никаким зарядом? Или снабдили ее зарядом
? Или она находится под напряжением, не равным нулю? Такие вопросы разрешаются сходу. Всегда ведь можно добавить в центр сферы точечный заряд
. По принципу наложения сфера всегда останется эквипотенциальной, а изменится только величина потенциала. Если у нас, скажем, есть проводящая сфера, предварительно разряженная и изолированная от всего, и мы поднесли к ней положительный заряд
, то суммарный заряд сферы останется равным нулю. Решение можно найти, взяв тот же, что и прежде, заряд-изображение
и вдобавок к нему заряд в центре сферы, такой, что
(6.32)
Поля повсюду вне сферы будут получаться наложением полей от
и
. Задача решена.
Теперь ясно, что между сферой и точечным зарядом
должна существовать сила притяжения. Она не пропадает, даже если сфера нейтральна, на ней нет никакого заряда. Откуда же берется притяжение? Когда вы подносите к проводящей сфере положительный заряд, то он притягивает отрицательные заряды на ближний конец сферы, положительные же оставляет на дальнем. А притяжение отрицательными зарядами перевешивает отталкивание положительными; в итоге остается притяжение. Силу его можно прикинуть, подсчитав силу, действующую на
в поле, созданном
и
. Суммарная сила равна силе притяжения между зарядами
и
на расстоянии
плюс сила отталкивания
и заряда
на расстоянии
.
Если вы в детстве любили разглядывать журнал, на обложке которого был показан мальчик, разглядывающий журнал, на обложке которого показан мальчик, разглядывающий журнал, на обложке которого..., то вас заинтересует и следующая задача. Две одинаковые сферы, одна с зарядом
, а другая с зарядом
, расположены на некотором расстоянии друг от друга. Какова сила притяжения между ними? Задача решается при помощи бесконечного количества изображений. Первое приближает каждую сферу зарядом в ее центре. Эти заряды создают свои изображения на другой сфере. У изображений в свою очередь есть свои изображения и т. д., и т. д., и т. д. Решение здесь — все равно что картинка на обложке. Сходится оно очень быстро.