Читать в оригинале

<< Предыдущая Оглавление Следующая >>


§ 9. Точечный заряд у проводящей сферы

А какие еще поверхности, кроме плоскости, имеют простое решение? Самая простая из них — сфера. Попробуем определить поля вокруг металлической сферы с точечным зарядом  вблизи нее (фиг. 6.11). Придется поискать простую физическую задачу, для которой сфера есть эквипотенциальная поверхность. Если мы просмотрим те задачи, которые уже решены, то увидим, что у поля двух неравных точечных зарядов одна из эквипотенциальных поверхностей как раз и есть сфера. Отметим себе это! Если мы как следует подберем положение заряда изображения и нужную его величину, может быть, тогда мы и сможем подогнать эквипотенциальную поверхность к нашей сфере. Это и впрямь может быть сделано, если действовать по следующему рецепту.

Фигура 6.11. Точечный заряд  наводит на заземленной проводящей сфере заряды, которые создают поле, такое же, как у заряда-изображения, помещенного в указанной точке.

Положим, что вы хотите, чтобы эквипотенциальная поверхность была сферой радиуса  с центром, отстоящим от заряда  на расстояние . Поместите изображение заряда величины  на радиусе, проходящем через заряд на расстоянии  от центра. Потенциал сферы пусть будет нуль.

Математически причина состоит в том, что сфера есть геометрическое место точек, отношение расстояний которых от двух данных точек постоянно. Как следует из фиг. 6.11, потенциал в точке  от зарядов  и  пропорционален сумме

и будет равен нулю во всех точках, для которых

 или

Если мы помещаем  на расстоянии  от центра, то отношение  равно постоянной величине . Тогда если

,                                  (6.31)

то сфера станет эквипотенциалью. Потенциал ее на самом деле будет равен нулю.

А что, если нам понадобится сфера с ненулевым потенциалом? Ведь он равен нулю только тогда, когда ее суммарный заряд случайно окажется равным ! Конечно, если ее заземлить, то наведенные на ней заряды окажутся в точности такими, как надо. Ну, а если она заизолирована и мы не снабдили ее никаким зарядом? Или снабдили ее зарядом ? Или она находится под напряжением, не равным нулю? Такие вопросы разрешаются сходу. Всегда ведь можно добавить в центр сферы точечный заряд . По принципу наложения сфера всегда останется эквипотенциальной, а изменится только величина потенциала. Если у нас, скажем, есть проводящая сфера, предварительно разряженная и изолированная от всего, и мы поднесли к ней положительный заряд , то суммарный заряд сферы останется равным нулю. Решение можно найти, взяв тот же, что и прежде, заряд-изображение  и вдобавок к нему заряд в центре сферы, такой, что

                         (6.32)

Поля повсюду вне сферы будут получаться наложением полей от  и . Задача решена.

Теперь ясно, что между сферой и точечным зарядом  должна существовать сила притяжения. Она не пропадает, даже если сфера нейтральна, на ней нет никакого заряда. Откуда же берется притяжение? Когда вы подносите к проводящей сфере положительный заряд, то он притягивает отрицательные заряды на ближний конец сферы, положительные же оставляет на дальнем. А притяжение отрицательными зарядами перевешивает отталкивание положительными; в итоге остается притяжение. Силу его можно прикинуть, подсчитав силу, действующую на  в поле, созданном  и . Суммарная сила равна силе притяжения между зарядами  и  на расстоянии  плюс сила отталкивания  и заряда  на расстоянии .

Если вы в детстве любили разглядывать журнал, на обложке которого был показан мальчик, разглядывающий журнал, на обложке которого показан мальчик, разглядывающий журнал, на обложке которого..., то вас заинтересует и следующая задача. Две одинаковые сферы, одна с зарядом , а другая с зарядом , расположены на некотором расстоянии друг от друга. Какова сила притяжения между ними? Задача решается при помощи бесконечного количества изображений. Первое приближает каждую сферу зарядом в ее центре. Эти заряды создают свои изображения на другой сфере. У изображений в свою очередь есть свои изображения и т. д., и т. д., и т. д. Решение здесь — все равно что картинка на обложке. Сходится оно очень быстро.

 



<< Предыдущая Оглавление Следующая >>