Читать в оригинале

<< ПредыдущаяОглавлениеСледующая >>


§ 12. Ионный микроскоп

Сверхвысокое электрическое поле, окружающее всякий острый выступ заряженного проводника, получило интересное применение в одном приборе. Работа ионного микроскопа обусловлена мощными полями, возникающими вокруг металлического острия. Устроен этот прибор так. Очень тонкая игла, диаметр кончика которой не более , помещена в центре стеклянной сферы, из которой выкачан воздух (фиг. 6.16). Внутренняя поверхность сферы покрыта тонким проводящим слоем флуоресцирующего вещества, и между иглой и флуоресцирующим покрытием создана очень высокая разность потенциалов.

Фигура 6.16. Ионный микроскоп.

Посмотрим сперва, что будет, если игла по отношению к флуоресцирующему экрану заряжена отрицательно. Линии поля у кончика иглы сконцентрированы очень сильно. Электрическое поле может достигать . В таких сильных полях электроны отрываются от поверхности иглы и ускоряются на участке от иглы до экрана за счет разности потенциалов. Достигнув экрана, они вызывают в этом месте свечение (в точности, как на экране телевизионной трубки).

Электроны, пришедшие в данную точку флуоресцирующей поверхности, — это, в очень хорошем приближении, те самые электроны, которые покинули другой конец радиальной линии поля, потому что электроны движутся вдоль линий поля, соединяющих кончик иглы с поверхностью сферы. Так что на поверхности мы видим своего рода изображение кончика иглы. А точнее, мы видим картину испускательной способности поверхности иглы, т. е. легкости, с которой электроны могут оставить поверхность металлического острия. Если сила разрешения достаточно высока, то можно рассчитывать разрешить положения отдельных атомов на кончике иглы. Но с электронами такого разрешения достичь нельзя по следующим причинам. Во-первых, возникает квантовомеханическая дифракция электронных волн, и изображение затуманится. Во-вторых, в результате внутреннего движения в металле электроны имеют небольшую поперечную начальную скорость в момент вырывания из иглы и эта случайная поперечная составляющая скорости приведет к размазыванию изображения. В общей сложности эти эффекты ограничивают разрешимость деталей величиной порядка .

Если, однако, мы переменим знак напряжения и впустим в колбу немного гелия, то детали разрешены будут лучше. Когда атом гелия сталкивается с кончиком острия, мощное поле срывает с атома электрон, и атом заряжается положительно. Затем ион гелия ускоряется вдоль силовой линии, пока не попадет в экран. Поскольку ион гелия несравненно тяжелее электрона, то и квантовомеханические длины волн у него намного меньше. А если к тому же температура не очень высока, то и влияние тепловых скоростей также значительно слабее, чем у электрона. Изображение размазывается меньше и получается куда более резкое изображение кончика иглы. С микроскопом, работающим на принципе ионной эмиссии, удалось добиться увеличения вплоть до 2 000 000 раз, т. е. в десять раз лучше, чем на лучших электронных микроскопах.

На фиг. 6.17 показано, что удалось получить на таком микроскопе, применив вольфрамовую иглу. Центры атомов вольфрама ионизуют атомы гелия чуть иначе, чем промежутки между атомами вольфрама. Расположение пятен на флуоресцирующем экране демонстрирует расстановку отдельных атомов на вольфрамовом острие. Почему пятна имеют вид колец, можно понять, если представить себе большой ящик, набитый шарами, уложенными в прямоугольную сетку и образующими таким образом кубическую решетку. Эти шары — как бы атомы в металле. Если вы из этого ящика вырежете примерно сферическую часть, то увидите картину колец, характерную для атомной структуры. Ионный микроскоп впервые снабдил человечество средством видеть атомы. Замечательное достижение, да еще полученное с таким простым прибором.

Фигура 6.17. Изображение, полученное ионным микроскопом

 



<< ПредыдущаяОглавлениеСледующая >>