Читать в оригинале

<< ПредыдущаяОглавлениеСледующая >>


Глава 9. Электричество в атмосфере

§ 1. Градиент электрического потенциала

В обычный день над пустынной равниной или над морем электрический потенциал по мере подъема возрастает с каждым метром примерно на . В воздухе имеется вертикальное электрическое поле  величиной . Знак поля отвечает отрицательному заряду земной поверхности. Это означает, что на улице потенциал на уровне вашего носа на  выше, чем потенциал на уровне пяток! Можно, конечно, спросить: «Почему бы не поставить пару электродов на воздухе в метре друг от друга и не использовать эти  для электрического освещения?» А можно и удивиться: «Если действительно между моим носом и моей пяткой имеется напряжение , то почему же меня не ударяет током,  как только я выхожу на улицу?»

Сперва ответим на второй вопрос. Ваше тело — довольно хороший проводник. Когда вы стоите на земле, вы вместе с нею образуете эквипотенциальную поверхность. Обычно эквипотенциальные поверхности параллельны земле (фиг. 9.1, а), но когда на земле оказываетесь вы, то они смещаются, и поле начинает выглядеть примерно так, как показано на фиг. 9.1, б. Так что разность потенциалов между вашей макушкой и пятками почти равна нулю. С земли на вашу голову переходят заряды и изменяют поле вокруг вас. Часть из них разряжается ионами воздуха, но ионный ток очень мал, ведь воздух плохой проводник.

Фигура 9.1. Распределение потенциала: а — над землей; б — около человека, стоящего на ровном месте.

Как же измерить такое поле, раз оно искажается от всего, что в него попадает? Имеется несколько способов. Один способ — расположить изолированный проводник на какой-то высоте над землей и не трогать его до тех пор, пока он не приобретет потенциал воздуха. Если подождать довольно долго, то даже при очень малой проводимости воздуха заряды стекут с проводника (или натекут на него), уравняв его потенциал с потенциалом воздуха на этом уровне. Тогда мы можем опустить его к земле и измерить изменение его потенциала. Другой более быстрый способ — в качестве проводника взять ведерко воды, в котором имеется небольшая течь. Вытекая, вода уносит излишек заряда, и ведерко быстро приобретает потенциал воздуха. (Заряды, как вы знаете, растекаются по поверхности, а капли воды — это уходящие «куски поверхности».) Потенциал ведра можно измерить электрометром.

Имеется еще способ прямого измерения градиента потенциала. Раз существует электрическое поле, то должен быть и поверхностный заряд на земле (). Если мы поместим у поверхности земли плоскую металлическую пластинку  и заземлим ее, то на ней появятся отрицательные заряды (фиг. 9.2, а). Если затем прикрыть пластинку другой заземленной проводящей крышкой , то заряды появятся уже на крышке , а на пластинке  исчезнут. Если мы измерим заряд, перетекающий с пластинки  на землю (скажем, с помощью гальванометра в цепи заземляющего провода) в тот момент, когда  закрывают крышкой, то мы найдем плотность поверхностного заряда, бывшего на , а значит, и электрическое поле.

Рассмотрев способы измерения электрического поля в атмосфере, продолжим теперь его описание. Измерения прежде всего показывают, что с увеличением высоты поле продолжает существовать, только становится слабее. На высоте примерно  поле уже еле-еле заметно, так что большая часть изменения потенциала (интеграла от ) приходится на малые высоты. Вся разность потенциалов между поверхностью земли и верхом атмосферы равна почти .

Фигура. 9.2. Заземленная металлическая пластинка обладает тем же поверхностным зарядом, что и земля (а); если пластинка прикрыта сверху заземленным проводником, на ней заряда нет (б).

 



<< ПредыдущаяОглавлениеСледующая >>