Глава 38. УПРУГОСТЬ§ 1. Закон ГукаТеория упругости занимается поведением таких тел, которые обладают свойством восстанавливать свой размер и форму после снятия деформирующих сил. В какой-то степени этими упругими свойствами обладают все твердые тела. Если бы у нас было время заниматься этим предметом подольше, то нам пришлось бы рассмотреть множество вопросов: поведение напряженных материалов, законы упругости и общая теория упругости, атомный механизм, определяющий упругие свойства, и, наконец, ограничения на законы упругости, когда силы становятся настолько велики, что возникает пластическое течение и разрушение. Детальное рассмотрение всех этих вопросов потребовало бы гораздо больше времени, чем мы располагаем, поэтому кое от чего нам придется отказаться. Например, мы не будем обсуждать вопросы пластичности и ограничений на законы упругости. (Этого мы коснемся только очень кратко, когда у нас речь пойдет о дислокациях в металлах.) Мы не сможем также обсудить механизм упругости, так что наше исследование не будет обладать той полнотой, к которой мы стремились в предыдущих главах. Основная цель лекции - познакомить вас с некоторыми способами обращения с такими практическими задачами, как, например, задача об изгибании бруска. Если вы надавите на кусок материала, то материал «поддастся» - он деформируется. При достаточно малых силах относительное перемещение различных точек материала пропорционально силе. Такое поведение называется упругим. Мы будем говорить только о таком упругом поведении. Сначала мы выпишем фундаментальный закон упругости, а затем применим его к нескольким различным ситуациям. Предположим, что мы взяли прямоугольный брусок длиной
Это соотношение известно как закон Гука. Фиг. 38.1. Растяжение бруска под действием однородной нагрузки. Удлинение бруска
Сила
Постоянная Силу, действующую на единичной площади, называют напряжением, а удлинение участка, отнесенное к его длине, т. е. относительное удлинение называют деформацией. Уравнение (38.3) можно переписать следующим образом:
При растяжении, подчиняющемуся закону Гука, возникает еще одно осложнение: если брусок материала растягивается в одном направлении, то под прямым углом к растяжению он сжимается. Уменьшение толщины пропорционально самой толщине
где постоянная Две константы Последний общий закон, который нам нужен, - это принцип суперпозиции. Поскольку оба закона (38.4) и (38.5) линейны в отношении сил и перемещений, то принцип суперпозиций будет работать. Если при одном наборе сил вы получаете некоторое дополнительное перемещение, то результирующее перемещение будет суммой перемещений, которые бы получились при независимом действии этих наборов сил. Теперь мы имеем все необходимые общие принципы: принцип суперпозиции и уравнения (38.4) и (38.5), т. е. все, что нужно для описания упругости. Впрочем, с таким же правом можно было заявить: у нас есть законы Ньютона, и это все, что нужно для механики. Или, задавшись уравнениями Максвелла, мы имеем все необходимое для описания электричества. Оно, конечно, так; из этих принципов вы действительно можете получить почти все, ибо ваши теперешние математические возможности позволяют вам продвинуться достаточно далеко. Но мы все же рассмотрим лишь некоторые специальные приложения.
|