Читать в оригинале

<< ПредыдущаяОглавлениеСледующая >>


§ 6. Поток Куеттэ

Можно показать, что сложный и изменчивый характер потока мимо цилиндра не исключение и что такое разнообразие возможностей получается и в общем случае. В §1 мы нашли решение для вязкой жидкости между двумя цилиндрами и можем сравнить эти результаты с тем, что получается на самом деле. Если мы возьмем два концентрических цилиндра и заполним пространство между ними маслом с добавленной в него мелкой алюминиевой пудрой, то поток можно легко наблюдать. Если начнем медленно вращать внешний цилиндр, то ничего неожиданного не произойдет (фиг. 41.8,а). Можно медленно вращать и внутренний цилиндр, все равно ничего потрясающего не будет. А вот если мы начнем очень быстро вращать внутренний цилиндр - случится нечто удивительное. Жидкость разобьется на горизонтальные полосы (фиг. 41.8,б). Если с подобной же скоростью мы будем вращать внешний цилиндр, а внутренний оставим в покое, то никакого похожего эффекта не возникает. Как же получается, что не все равно, какой цилиндр вращать - внутренний или внешний. Ведь в конце концов вид потока, который мы нашли в §1, зависел только от . Ответ можно получить, взглянув на сечение цилиндра, изображенного на фиг. 41.9. Когда внутренние слои жидкости движутся быстрее, чем внешние, они стремятся двигаться наружу: центробежная сила становится больше удерживающего давления. Но весь слой целиком не может двигаться равномерно, так как на его пути стоят внешние слои. Поэтому они разбиваются на клетки и циркулируют, как показано на фиг. 41.9,б. Это напоминает конвекционные токи в комнате, где на уровне пола имеется слой теплого воздуха. Когда внутренний цилиндр находится в покое, а внешний цилиндр вращается с большой скоростью, центробежные силы создают градиент давления, который удерживает все в равновесии (фиг. 41.9, в), как теплый воздух, находящийся у потолка.

270.gif

Фиг. 41.8. Виды потока жидкости между двумя прозрачными вращающимися цилиндрами.

271.gif

Фиг. 41.9. Вот почему поток разбивается на полосы.

Теперь ускорим внутренний цилиндр. Сначала число полос увеличится. Затем неожиданно полосы станут волнистыми (см. фиг. 41.8,в), и волны эти начнут обтекать цилиндр. Скорость этих волн легко измерить. При больших скоростях вращения она приближается к 1/8 от скорости внутреннего цилиндра, а почему, никто не знает. Здесь есть над чем подумать. Простое число 1/3 и полное отсутствие объяснения! Вообще говоря, весь механизм образования волн тоже далеко не ясен, хотя мы имеем дело со стационарным ламинарным потоком.

Если теперь мы еще начнем вращать и внешний цилиндр, но в противоположную сторону, то картина потока начнет разбиваться. Волновые области начнут чередоваться со спокойными на вид областями, образуя спиральную картину (см. фиг. 41.8,а). Однако в этих «спокойных» областях, как можно заметить, поток на самом деле совсем не регулярен; он полностью турбулентен. Кроме того, в волновых областях начинает еще появляться нерегулярный турбулентный поток. Если цилиндры вращаются еще быстрее, то весь поток становится хаотическим турбулентным.

Этот простой эксперимент показал нам много интересных режимов потока, совершенно отличных один от другого и все же содержащихся в нашем простом уравнении при различных величинах одного-единственного параметра . С помощью наших вращающихся цилиндров мы можем наблюдать многие эффекты, проявляющиеся в потоке, проходящем мимо цилиндра: во-первых, это стационарный поток, во-вторых, целый набор потоков, которые изменяются со временем, но регулярным гладким образом, и, наконец, поток становится полностью нерегулярным. Те же самые эффекты каждый из вас видел в столбике табачного дыма, струящегося от сигареты, когда воздух спокоен. Сначала этот столбик гладкий, затем он как-то скручивается, поток дыма начинает разрушаться, и, наконец, все заканчивается беспорядочными клубами.

Основное, что вам следует вынести из всего сказанного, заключается в том, что в одном простом наборе уравнений (41.23) скрывается огромное разнообразие поведений. Все это решения одного и того же уравнения при различных значениях . У нас нет причин думать, что в этом уравнении мы потеряли какие-то слагаемые. Единственная трудность заключается в том, что нам сегодня не хватает математических знаний, чтобы проанализировать уравнение, за исключением очень малых чисел Рейнольдса, т. е. в случае очень вязкой жидкости. Написав уравнение, мы не отняли у потока жидкости ни его чарующей прелести, ни его таинственности, ни его поразительности.

Что ожидает нас в более сложных уравнениях, если даже в таком простом уравнении с одним-единственным параметром мы видим такое разнообразие возможностей! Вполне возможно, что основное уравнение, которое описывает завихрение туманностей, или образование вращений, или взрыв звезд и галактик, будет всего-навсего простым уравнением гидродинамики почти чистого водорода. Часто люди в каком-то неоправданном страхе перед физикой говорят, что невозможно написать уравнение жизни. А может быть, и можно. Очень возможно, что на самом деле мы уже располагаем достаточно хорошим приближением, когда пишем уравнение квантовой механики

.

Только что мы видели, как явления во всей их сложности легко и поразительно получаются из простых уравнений, которые описывают их. Не подозревая о возможностях простых уравнений, люди часто заключают, что для объяснения всей сложности мира требуется нечто данное от бога, а не просто уравнения.

Мы написали уравнения для течения воды. Но из нашего опыта у нас сложились какие-то понятия и приближения, пользуясь которыми, мы можем обсуждать разные решения - цепочку вихрей, турбулентный след, пограничный слой. Когда подобные уравнения встречаются нам в менее знакомой ситуации, где мы еще не можем экспериментировать, то мы пытаемся решать такие уравнения примитивным, извилистым и запутанным путем, стремясь определить, какие же качественные явления можно получить из него или какие новые качественные формы являются следствием этого уравнения. Наши уравнения для Солнца, например, представляющие его как водородный шар, описывают Солнце без солнечных пятен, без зернистой структуры его поверхности, без неровностей и короны. Тем не менее все это действительно находится в уравнениях, только у нас нет еще способа вытащить их оттуда.

Есть такие люди, которые будут очень расстроены, если на других планетах не будет найдено жизни. Я не принадлежу к их числу. И я никогда не смогу перестать удивляться и радоваться результатам межпланетных исследований, обнаруживающих бесконечное разнообразие и новизну явлений, порожденных одними и теми же самыми простыми принципами. Критерий науки - ее способность предсказывать. Могли бы вы предсказать бури, вулканы, океанские волны, зори и красочные закаты, если бы вы никогда не были на Земле?

Драгоценным сокровищем для нас будет все, что мы узнаем о происходящем на каждой из мертвых планет, каждого из десятка шаров, образовавшихся из того же самого облака пыли и подчиняющихся тем же самым законам физики, что и наша планета.

Грядущая великая эра пробуждения человеческого разума принесет с собой метод понимания качественного содержания уравнений. Сегодня еще мы не способны на это. Сегодня мы не можем увидеть в уравнениях потока воды такие вещи, как спиральное строение турбулентности, которую мы видим между вращающимися цилиндрами. Сегодня мы не можем сказать с уверенностью, содержит ли уравнение Шредингера и лягушек, и композиторов, и даже мораль или там ничего похожего и быть не может. Мы не можем сказать, требуется ли что-либо сверх уравнения, вроде каких-то богов, или нет. Поэтому каждый из нас может иметь на этот счет свое особое мнение.

 



<< ПредыдущаяОглавлениеСледующая >>