§ 8. Другие случаи
Мы начали с того, что подчеркнули, что наши рассуждения о частице со спином
явятся прототипом любых квантовомеханических задач. Обобщения требует только количество состояний. Вместо тройки базисных состояний в других случаях может потребоваться
базисных состояний. Форма наших основных законов (3.27) останется той же, если только понимать, что
и
должны пробегать по всем
базисным состояниям. Любое явление можно проанализировать, задав амплитуды того, что оно начинается с любого базисного состояния и кончается тоже в любом базисном состоянии, а затем просуммировав по всей полной системе базисных состояний. Можно использовать любую подходящую систему базисных состояний, и каждый вправе выбрать ту, которая ему по душе; связь между любой парой базисов осуществляется матрицей преобразований
. Позже мы подробнее расскажем об этих преобразованиях.
Наконец, мы пообещали рассказать о том, что надо делать, если атомы прямо из печи проходят через какой-то прибор
и затем анализируются фильтром, который отбирает состояние
. Вы не знаете, каково то состояние
, в котором они входят в прибор. Лучше всего, наверное, было бы, если бы вы, не думая пока об этой проблеме, занимались такими задачами, в которых вначале имеются только чистые состояния. Но если уж вы на этом настаиваете, так вот как расправляются с этой проблемой.
Прежде всего вы должны быть в состоянии сделать разумные предположения о том, каким образом распределены состояния в атомах, которые выходят из печи. Например, если в печи нет чего-либо «особого», то разумно предположить, что атомы покидают печь, будучи «ориентированы» как попало. Квантово-механически это соответствует вашему утверждению о том, что о состояниях вы не знаете ничего, кроме того, что треть атомов находится в состоянии
, треть — в состоянии
и треть — в состоянии
. Для пребывающих в состоянии
амплитуда пройти сквозь
есть
, а вероятность
. То же и для других. Общая вероятность тогда равна

Но почему мы пользовались
, а не
или каким-нибудь другим представлением? Дело в том, что, как это ни странно, ответ не зависит от того, каким было исходное разложение; он один и тот же, если только мы имеем дело с совершенно случайными ориентациями. Таким же образом получается, что

для любого
. (Докажите-ка это сами!)
Заметьте, что неверно говорить, будто входные состояния обладают амплитудой
быть в состоянии
, в состоянии
и
в состоянии
; если бы это было так, были бы допустимы какие-то интерференции. Здесь вы просто не знаете, каково начальное состояние; вы обязаны думать на языке вероятностей, что система сперва находится во всевозможных мыслимых начальных состояниях, и затем взять средневзвешенное по всем возможностям.