Читать в оригинале

<< Предыдущая Оглавление Следующая >>


§ 3. Независимые частицы

В предыдущем параграфе мы написали гамильтониан (13.15) для двухчастичной системы. Затем, пользуясь приближением, эквивалентным пренебрежению каким-либо «взаимодействием» между двумя частицами, мы нашли стационарные состояния, описываемые формулами (13.17) и (13.18). Это состояние попросту есть произведение двух одночастичных состояний. Но решение, которое мы написали для  [формула (13.18)], на самом деле удовлетворить нас не может. Мы с самого начала подчеркивали, что состояние  не отличается от состояния , что порядок  и  неважен. Вообще говоря, алгебраическое выражение для амплитуды  не должно меняться от перестановки значений  и , потому что она не изменяет состояния. В любом случае она будет представлять амплитуду того, что спин, направленный вниз, обнаружится в  и в . Но обратите внимание, что (13.18) несимметрично по  и , поскольку  и , вообще говоря, различны.

Все дело в том, что мы не заставили наше решение (13.15) подчиниться этому добавочному условию. К счастью, пока нетрудно все исправить. Заметьте, во-первых, что ничуть не хуже формулы (13.18) другое решение уравнения Гамильтона:

.               (13.23)

И даже энергия здесь та же самая, что была в (13.18). Значит, любая линейная комбинация (13.18) и (13.23) также будет решением системы и будет обладать по-прежнему энергией, даваемой (13.19). Решение, которое нужно выбрать по требованиям симметрии, - просто сумма (13.18) и (13.23):

.              (13.24)

Теперь при данных  и  амплитуда  не зависит от того, в каком порядке мы берем  и ; если мы случайно поставим  и  в обратном порядке, мы получим ту же амплитуду. И наше толкование уравнения (13.24) на языке «магнонов» тоже станет иным. Уже нельзя говорить, что уравнение представляет одну частицу с волновым числом  и другую частицу с волновым числом . Амплитуда (13.24) представляет одно состояние с двумя частицами (магнонами). Состояние характеризуется двумя волновыми числами  и . Наше решение выглядит как составное состояние одной частицы с импульсом  и другой частицы с импульсом , но в этом состоянии нельзя сказать, где какая частица.

В этот момент полезно вспомнить гл. 2 (вып. 8) и наш рассказ о тождественных частицах. Мы просто только что показали, что частицы спиновых волн (магноны) ведут себя как тождественные бозе-частицы. Все амплитуды обязаны быть симметричны по координатам двух частиц; это все равно, что сказать, что после «обмена двумя частицами» мы снова получим ту же амплитуду с тем же знаком. Но вы можете подумать: «Почему же мы все-таки решили в (13.24) сложить два члена? Почему не вычесть?» Ведь при знаке минус обмен  и  просто изменил бы знак , а это не в счет, это не имеет значения. Но ведь обмен  с  ничего не меняет - все электроны кристалла останутся там же, где и были, так что даже для перемены знака нет, казалось бы, никакого повода. Но это, конечно, плохой аргумент.

Наше обсуждение имело двойную цель: во-первых, рассказать вам кое-что о спиновых волнах; во-вторых, продемонстрировать состояние, амплитуда которого равна произведению двух амплитуд, а энергия равна сумме энергий, отвечающих этим амплитудам. Для независимых частиц амплитуда получается умножением, а энергия - сложением. Почему сложением - легко понять. Энергия - это коэффициент при  в мнимом показателе экспоненты; она пропорциональна частоте. Если пара объектов что-то совершает, один с амплитудой , а другой с амплитудой  и если амплитуда того, что обе эти вещи произойдут вместе, является произведением отдельных амплитуд, то в произведении появится единственная частота, равная сумме двух частот. Энергия, отвечающая произведению амплитуд, есть сумма обеих энергий.

Нам понадобилось довольно долго говорить, чтобы сообщить очень простую вещь: когда вы не учитываете взаимодействия между частицами, вы вправе рассматривать каждую частицу независимо. Они могут отдельно существовать во всевозможных состояниях, в которых они пребывали бы и порознь, и давать тот же вклад в энергию, какой давали бы порознь. Однако следует помнить, что если частицы тождественны, то они могут вести себя как бозе- или ферми-частицы в зависимости от задачи. Например, пара электронов, добавленная к Кристаллу, ведет себя как ферми-частицы. Обмен местоположениями двух электронов приводит к перемене знака амплитуды. В уравнении, соответствующем (13.24), между двумя слагаемыми стоит знак минус. Как следствие этого: две ферми-частицы не могут пребывать в точности в одних и тех же условиях - с одинаковыми спинами и одинаковыми . Амплитуда такого состояния нуль.

 



<< Предыдущая Оглавление Следующая >>