НЕОБХОДИМОЕ И ДОСТАТОЧНОЕ УСЛОВИЯНеобходимое и достаточное условия - форма записи и осмысления математической теоремы. Например, теорему (рис. 1) «если точка Рис. 1 Вообще, если сказано, что некоторое утверждение Рассмотренную теорему можно разъяснить еще и так: если Вообще, если сказано, что некоторое утверждение Иначе говоря, каждую теорему (рис. 2) (где многоточие выражает разъяснительную часть теоремы, 1) если верно 2) для справедливости 3) для справедливости Рис. 2 Если для некоторой теоремы справедлива также и обратная ей теорема, то ее формулировку можно выразить по-другому, используя слова «необходимо и достаточно». Например, теорема (рис. 3) (дан и обратная ей теорема (дан - обе справедливы. Иными словами, для того чтобы треугольник был равнобедренным, необходимо, чтобы два угла этого треугольника были равными (исходная теорема); кроме того, чтобы треугольник был равнобедренным, достаточно, чтобы два угла этого треугольника были равными (обратная теорема). Это кратко записывается в виде (дан и читается словами так: для того чтобы треугольник был равнобедренным, необходимо и достаточно, чтобы два угла этого треугольника были равными. Рис. 3 Вот еще несколько примеров необходимых и достаточных условий. 1) Для того чтобы углы были вертикальными, необходимо, чтобы они были равными. 2) Для того чтобы четырехугольник был параллелограммом, достаточно, чтобы все его углы были прямыми. 3) Для параллельности прямых Рис. 4 Рис. 5 Слова «необходимо и достаточно» нередко заменяются словами: «тогда, и только тогда, когда» или «в том, и только в том, случае, если». Например, четырехугольник в том, и только в том, случае является параллелограммом, если его диагонали, пересекаясь, делятся пополам. Вместо того чтобы сказать «достаточное условие», «необходимое условие», иногда говорят «достаточный признак», «необходимый признак». Иногда даже говорят просто «признак», считая ясным, о каком из признаков (достаточном или необходимом) идет речь. Например, теорема «для того чтобы число делилось на 9, необходимо и достаточно, чтобы сумма его цифр делилась на 9» называется признаком делимости на 9. Теоремы о накрест лежащих углах при пересечении двух прямых третьей (взаимно обратные друг другу) объединяются общим названием «признак параллельности».
|