3.3. Рекуррентная каузальная фильтрация изображенийПроблема борьбы с шумом не решается полностью применением масочных фильтров по следующим причинам. Во-первых, ограниченность размера окрестности, используемой масочным фильтром, приводит к его потенциально ограниченной способности к подавлению шума. Это проявляется при значительном уровне шума на изображении - в меньшей степени при оптимальном выборе КИХ, сильнее при неоптимальной КИХ. Можно, конечно, увеличивать размер окрестности, прибегая к использованию КИХ-фильтров с более длинными импульсными характеристиками. Однако при этом усиливается второй недостаток масочного фильтра, состоящий в его и без того достаточно высокой вычислительной трудоемкости. В настоящее время отсутствуют методы двумерной фильтрации, в которых сочетаются предельно достижимое качество фильтрации и низкие требования к вычислительным ресурсам ЭВМ, реализующей обработку. Существует много подходов к решению данной проблемы, но все они для достижения компромисса между точностью и реализуемостью прибегают к тем или иным приближениям. Рассмотрим один из них [3.1]. Идея заключается в использовании двумерного БИХ-фильтра с таким видом импульсной характеристики, при которой его практическая реализация была бы простой, и с такими параметрами этой импульсной характеристики, при которых эффективность фильтрации приближалась бы к потенциально возможной. Создать фильтр с такими свойствами удается на основе аналогии с одномерным фильтром Калмана. Наиболее простым примером одномерной фильтрации является калмановская фильтрация однородной стационарной гауссовской последовательности, имеющей корреляционную функцию экспоненциального вида
Здесь
Нетрудно установить, что импульсная характеристика этого фильтра имеет экспоненциальный вид:
где Отталкиваясь от (3.13) как от одномерного аналога, будем находить двумерную БИХ для каузальной фильтрации изображений от некоррелированного шума в виде двумерной экспоненты:
Здесь, как и в случае одномерного фильтра,
Замечая, что выражение в круглых скобках является ошибкой фильтрации, представим эту формулу в виде:
Смысл данного выражения состоит в том, что при оптимальной линейной фильтрации ошибка ортогональна всем элементам наблюдаемых данных, используемых при фильтрации. Но тогда нетрудно убедиться и в ортогональности ошибки и результата фильтрации (получаемой оценки)
для чего достаточно вычислить левую часть этого выражения с учетом (3.2) и (3.15). Для дальнейшего необходимо воспользоваться в (3.16) принятым представлением импульсной характеристики (3.14), в результате данное соотношение превращается в уравнение относительно искомого параметра
С учетом этого, считая, что кадр имеет бесконечные размеры (это позволяет принять бесконечными соответствующие пределы суммирования в (3.2)), можно получить следующее алгебраическое уравнение
относительно параметра удовлетворяется при Подставив в (3.7) выражения ИХ (3.14) и корреляционной функции (3.17), можно получить следующую формулу для среднего квадрата ошибок фильтрации:
Подставив далее выражение ИХ (3.14) в (3.2), можно привести выражение отклика фильтра к виду :
Рекуррентный характер алгоритма (3.19) является важным положительным качеством рассматриваемого фильтра. Как следует из (3.19), его работа требует выполнения на каждом шаге обработки всего трех операций умножения и трех суммирования, причем структура алгоритма универсальна и, в частности, не зависит от отношения сигнал/шум. Для сравнения, масочный фильтр с размером окрестности 3 При фильтрации реальных изображений ограниченного размера возникает граничная проблема получения оценок в точках нулевой строки и нулевого столбца. Естественным решением является использование здесь обычной (одномерной) калмановской фильтрации. Пример применения описанного двумерного фильтра показан на рис. 3.3, где представлен результат эксперимента с тем же портретом и при том же отношении сигнал/шум -5 дБ, что и при испытании масочного фильтра.
Поэтому здесь не приводится показанное на рис.3.2.а входное изображение с шумом. Результат двумерной рекуррентной фильтрации представлен на рис.3.3.а, а на рис.3.3.б для сравнения повторен результат оптимальной масочной фильтрации (рис.3.2.б). Визуальная оценка говорит в пользу двумерного рекуррентного фильтра, поскольку уровень остаточного шума на рис.3.3.а ниже. Сравнение по среднему квадрату ошибок совпадает с субъективной оценкой: величина Необходимо отметить, однако, следующее. Вместе с уменьшением уровня шума при двумерной рекуррентной фильтрации наблюдается более значительная утрата резкости обработанного изображения. Это является проявлением упоминавшихся выше динамических искажений, более сильных при бесконечной импульсной характеристике, чем при конечной. Во-вторых, рассмотренный двумерный фильтр не является абсолютно оптимальным, поскольку его структура определена волевым решением при выборе ИХ в виде (3.14). Поэтому и получаемое при его помощи ослабление шума не является предельным.
|